Skip to main content
Log in

Barriers to advancing nanotechnology to better improve and translate nanomedicines

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Engineered nanomaterials and nanotechnologies promise many benefits to enhance both in vitro and in vivo performance. This is now manifest in the increasing number of reported biomedical products under development and testing that contain nanotechnologies as their distinguishing performance—enhancing components. In many cases, nano-sized materials are selected to provide a specific functional aspect that contributes to improved medical performance, either in vitro or in vivo. Nanoparticles are most commonly exploited in diverse roles in topical lotions and creams, solubilization aids, for in vitro and in vivo diagnostic and targeting agents in nanomedicines and theranostics. Despite fundamental scientific excitement and many claims to nanotechnology-based improvements in new biomedical applications, several fundamental and long-standing challenges remain to be addressed using nanomedicines to make clinically important progress. This review addresses several issues that must be fairly and objectively reported and then overcome to provide truly credible performance for nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etheridge ML, Campbell S A, Erdman A G, Haynes C L, Wolf SM, McCullough J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine, 2013, 9: 1–14

    Article  CAS  Google Scholar 

  2. Bawa R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnology Law & Business, 2008, 5: 135–155

    Google Scholar 

  3. Ventola C L. The nanomedicine revolution. Part 2: Current and future clinical applications. Pharmacy and Therapeutics, 2012, 37(10): 582–591

    Google Scholar 

  4. Bawa R. Regulating nanomedicine—Can the FDA handle it? Current Drug Delivery, 2011, 8: 227–234

    Article  CAS  Google Scholar 

  5. Vashist S K, Venkatesh A G, Mitsakakis K, Czilwik G, Roth G, Stetten F, Zengerle R. Nanotechnology-based biosensors and diagnostics: Technology push versus industrial/healthcare requirements. BioNanoScience, 2012, 2: 115–126

    Article  Google Scholar 

  6. Robert J, Fisher T P. Form nanoparticles via controlled crystallization. Chemical Engineering Progress, 2008, 33-39

  7. Tlmpe C. Drug solubilization strategies applying nanoparticulate formulation and solid dispersion approaches in drug development. Pharmacological Reviews, 2010, 13: 12–21

    Google Scholar 

  8. Muller R H, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 2001, 47: 3–19

    Article  CAS  Google Scholar 

  9. Merisko-Liversidge E M, Liversidge G G. Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicologic Pathology, 2008, 36: 43–48

    Article  CAS  Google Scholar 

  10. Johnson K C. Comparison of methods for predicting dissolution and the theoretical implications of particle-size-dependent solubility. Journal of Pharmaceutical Sciences, 2012, 101: 681–689

    Article  CAS  Google Scholar 

  11. Kaptay G. On the size and shape dependence of the solubility of nano-particles in solutions. International Journal of Pharmaceutics, 2012, 430: 253–257

    Article  CAS  Google Scholar 

  12. Merisko-Liversidge E, Liversidge G G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Advanced Drug Delivery Reviews, 2011, 63: 427–440

    Article  CAS  Google Scholar 

  13. Miele E, Spinelli G P, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. International Journal of Nanomedicine, 2009, 4: 99–105

    CAS  Google Scholar 

  14. Raj S, Jose S, Sumod U S, Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences, 2012, 4: 186–193

    Article  CAS  Google Scholar 

  15. Wiechers J W, Musee N. Engineered inorganic nanoparticles and cosmetics: Facts, issues, knowledge gaps and challenges. Journal of Biomedical Nanotechnology, 2010, 6: 408–431

    Article  CAS  Google Scholar 

  16. Mu L, Sprando R L. Application of nanotechnology in cosmetics. Pharm Res, 2010, 27: 1746–1749

    Article  CAS  Google Scholar 

  17. Nohynek G J, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicology and Applied Pharmacology, 2010, 243: 239–259

    Article  CAS  Google Scholar 

  18. Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological Sciences, 2006, 91: 159–165

    Article  CAS  Google Scholar 

  19. Rouse J G, Yang J, Ryman-Rasmussen J P, Barron A R, Monteiro-Riviere N A. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Letters, 2007, 7: 155–160

    Article  CAS  Google Scholar 

  20. Corot C, Warlin D. Superparamagnetic iron oxide nanoparticles for MRI: Contrast media pharmaceutical company R&D perspective. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2013, 5(5): 411–422

    CAS  Google Scholar 

  21. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. Biomedical Imaging and Intervention Journal, 2010, 6: e12

    Article  CAS  Google Scholar 

  22. Huang C H, Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Current Topics in Medicinal Chemistry, 2013, 13: 411–421

    Article  CAS  Google Scholar 

  23. Schellenberger E A, Bogdanov A Jr, Hogemann D, Tait J, Weissleder R, Josephson L. Annexin V-CLIO: A nanoparticle for detecting apoptosis by MRI. Molecular Imaging, 2002, 1: 102–107

    Article  CAS  Google Scholar 

  24. Harisinghani M G, Barentsz J, Hahn P F, Deserno W M, Tabatabaei S, van de Kaa C H, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine, 2003, 348: 2491–2499

    Article  Google Scholar 

  25. Fortina P, Kricka L J. Nanotechnology: Improving clinical testing? Clinical Chemistry, 2010, 56: 1384–1389

    Article  CAS  Google Scholar 

  26. Dobson M G, Galvin P, Barton D E. Emerging technologies for point-of-care genetic testing. Expert Review of Molecular Diagnostics, 2007, 7: 359–370

    Article  CAS  Google Scholar 

  27. Agasti S S, Rana S, Park M H, Kim C K, You C C, Rotello V M. Nanoparticles for detection and diagnosis. Advanced Drug Delivery Reviews, 2010, 62: 316–328

    Article  CAS  Google Scholar 

  28. Sanvicens N, Marco M P. Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends in Biotechnology, 2008, 26: 425–433

    Article  CAS  Google Scholar 

  29. Dandy D S, Wu P, Grainger D W. Array feature size influences nucleic acid surface capture in DNA microarrays. Proceedings of National Academy of Sciences of the United States of America, 2007, 104: 8223–8228

    Article  CAS  Google Scholar 

  30. Rao A N, Grainger D W. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomaterials Science, 2014, 2: 436–471

    Article  CAS  Google Scholar 

  31. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano, 2013, 7: 7442–7447

    Article  CAS  Google Scholar 

  32. Loeve S, Vincent B B, Gazeau F. Nanomedicine metaphors: From war to care. Emergence of an oecological approach. Nano Today, 2013, 8(6): 560–565

    Article  CAS  Google Scholar 

  33. Grainger D W, Castner D G. Nanobiomaterials and nanoanalysis: how to improve the nanoscience for biotechnology. Advanced Materials, 2008, 20: 867–877

    Article  CAS  Google Scholar 

  34. Crist RM, Grossman J H, Patri A K, Stern S T, Dobrovolskaia MA, Adiseshaiah P P, Clogston J D, McNeil S E. Common pitfalls in nanotechnology: Lessons learned from NCI’s nanotechnology characterization laboratory. Integrative Biology, 2013, 5: 66–73

    Article  CAS  Google Scholar 

  35. Richman E K, Hutchison J E. The nanomaterial characterization bottleneck. ACS Nano, 2009, 3: 2441–2446

    Article  CAS  Google Scholar 

  36. Buzea C, Pacheco I I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2: MR17–71

    Article  Google Scholar 

  37. Baer D R, Engelhard M H, Johnson G E, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch B L, Karakoti A, Kuchibhatla S V N T, Moon D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vaccum Science & Technology A, 2013, 31: 50820

    Article  Google Scholar 

  38. Stirland D L, Nichols J W, Miura S, Bae Y H. Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. Journal of Controlled Release, 2013, 172: 1045–1064

    Article  CAS  Google Scholar 

  39. Begley C G, Ellis L M. Drug development: Raise standards for preclinical cancer research. Nature, 2012, 483: 531–533

    Article  CAS  Google Scholar 

  40. Ensign L M, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 2012, 64: 557–570

    Article  CAS  Google Scholar 

  41. Yamanaka Y J, Leong K W. Engineering strategies to enhance nanoparticle-mediated oral delivery. Journal of Biomaterials Science, Polymer Edition, 2008, 19: 1549–1570

    Article  CAS  Google Scholar 

  42. Yuan H, Chen C Y, Chai G H, Du Y Z, Hu F Q. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Molecular Pharmaceitocs, 2013, 10: 1865–1873

    Article  CAS  Google Scholar 

  43. Hussain N, Jaitley V, Florence A T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 2001, 50: 107–142

    Article  CAS  Google Scholar 

  44. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling W G. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012, 6(1): 36–46

    Article  CAS  Google Scholar 

  45. Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 2001, 53: 283–318

    CAS  Google Scholar 

  46. Moghimi S M, Hunter A C, Murray J C. Nanomedicine: Current status and future prospects. FASEB Journal, 2005, 19: 311–330

    Article  CAS  Google Scholar 

  47. Bae Y H, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 2011, 153: 198–205

    Article  CAS  Google Scholar 

  48. Kwon I K, Lee S C, Han B, Park K. Analysis on the current status of targeted drug delivery to tumors. Journal of Controlled Release, 2012, 164: 108–114

    Article  CAS  Google Scholar 

  49. Bertrand N, Leroux J C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release, 2012, 161: 152–163

    Article  CAS  Google Scholar 

  50. Harris J M, Chess R B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2003, 2: 214–221

    Article  CAS  Google Scholar 

  51. Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Experimental Biology and Medicine, 2007, 232: 958–966

    CAS  Google Scholar 

  52. Rodriguez P L, Harada T, Christian D A, Pantano D A, Tsai R K, Discher D E. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science, 2013, 339: 971–975

    Article  CAS  Google Scholar 

  53. Fang R H, Hu C M, Zhang L. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opinion on Biological Therapy, 2012, 12: 385–389

    Article  CAS  Google Scholar 

  54. Florence A T. “Targeting” nanoparticles: The constraints of physical laws and physical barriers. Journal of Controlled Release, 2012, 164: 115–124

    Article  CAS  Google Scholar 

  55. Gronow J R. Mechanisms of particle movement in porous media. Clay Minerals, 1986, 21: 753–767

    Article  Google Scholar 

  56. Pirollo K F, Chang E H. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends in Biotechnology, 2008, 26: 552–558

    Article  CAS  Google Scholar 

  57. Kirpotin D B, Drummond D C, Shao Y, Shalaby M R, Hong K, Nielsen U B, Marks J D, Benz C C, Park JW. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research, 2006, 66: 6732–6740

    Article  CAS  Google Scholar 

  58. Chauhan V P, Jain R K. Strategies for advancing cancer nanomedicine. Nature Materials, 2013, 12: 958–962

    Article  CAS  Google Scholar 

  59. Verma S, Miles D, Gianni L, Krop I E, Welslau M, Baselga J, Pegram M, Oh D Y, Diéras V, Guardino E, Fang L, Lu M W, Olsen S, Blackwell K. Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England Journal of Medicine, 2012, 367: 1783–1791

    Article  CAS  Google Scholar 

  60. Al-Jamal K T. Active drug targeting: Lessons learned and new things to consider. International Journal of Pharmaceutics, 2013, 454: 525–526

    Article  CAS  Google Scholar 

  61. Lammers T, Kiessling F, Hennink W E, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 2012, 161: 175–187

    Article  CAS  Google Scholar 

  62. Underwood J C, Carr I. The ultrastructure and permeability characteristics of the blood vessels of a transplantable rat sarcoma. The Journal of Pathology, 1972, 107: 157–166

    Article  CAS  Google Scholar 

  63. Peterson H I, Appelgren K L. Experimental studies on the uptake and rentention of labelled proteins in a rat tumour. European Journal of Cancer, 1973, 9(8): 543–547

    Article  CAS  Google Scholar 

  64. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 1986, 46: 6387–6392

    CAS  Google Scholar 

  65. Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability: Where is the missing link? Journal of Controlled Release, 2012, 164: 265–275

    Article  CAS  Google Scholar 

  66. Nichols J W, Bae Y H. EPR: Evidence and fallacy. Journal of Controlled Release, 2014, 190: 451–464

    Article  CAS  Google Scholar 

  67. Aaron M, Suzanne K L, Russell B, Lee M E, Zwelling L. A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. PLOS ONE, 2013, doi: 10.1371/journal.pone.0063221

    Google Scholar 

  68. Prinz F, Schlange T, Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nature Reviews Drug Discovery, 2011, 10: 712

    Article  CAS  Google Scholar 

  69. American Type Culture Collection Standards Development Organization Workgroup ASN-0002. Cell line misidentification: the beginning of the end. Nature Reviews Cancer, 2010, 10: 441–448

  70. Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: How much more data do we need? Biotechniques, 2007, 43(5): 575, 577–578, 581–582 passim

    Article  CAS  Google Scholar 

  71. Hartung T. Look back in anger—what clinical studies tell us about preclinical work. Altex, 2013, 30(3): 275–291

    Article  Google Scholar 

  72. Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2: 751–760

    Article  CAS  Google Scholar 

  73. Crommelin D J, Florence A T. Towards more effective advanced drug delivery systems. International Journal of Pharmaceutics, 2013, 454: 496–511

    Article  CAS  Google Scholar 

  74. Venditto V J, Szoka F C Jr. Cancer nanomedicines: So many papers and so few drugs! Advanced Drug Delivery Reviews, 2013, 65: 80–88

    Article  CAS  Google Scholar 

  75. Paul SM, Mytelka D S, Dunwiddie C T, Persinger C C, Munos B H, Lindborg S R, Schacht A L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 2010, 9: 203–214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Grainger.

Additional information

David W. Grainger is a University Distinguished Professor and George S. and Dolores DoréEccles Presidential Endowed Chair in Pharmaceutics and Pharmaceutical Chemistry, Chair of the Department of Pharmaceutics and Pharmaceutical Chemistry, and Professor of Bioengineering at the University of Utah. Grainger’s research expertise is focused on improving implanted medical device performance, drug delivery of new therapeutic proteins, nucleic acids and live vaccines, nanomaterials interactions with human tissues, and in vitro diagnostic devices. Grainger has published 170 research papers and 21 book chapters. He has won research several awards, including the 2013 Excellence in Surface Science Award from the Surfaces in Biomaterials Foundation, the 2007 Clemson Award for Basic Research, Society for Biomaterials, and the 2005 American Pharmaceutical Research and Manufacturer’s Association’s award for “Excellence in Pharmaceutics”. Co-author Dr. Yuwei Wang was born in Beijing, China and received her Ph.D. in Pharmaceutics from Dr. David Grainger’s lab at Utah. Her dissertation focused on local delivery of siRNA targeting several signaling molecules in osteoporosis. She really enjoys snowboarding in Utah’s mountains and other snowy regions in her free time. Her current position at Nitto Denko Technologies, Ltd, focuses on delivery of siRNA to address unmet clinical needs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Grainger, D.W. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front. Chem. Sci. Eng. 8, 265–275 (2014). https://doi.org/10.1007/s11705-014-1442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1442-x

Keywords

Navigation