Skip to main content

Advertisement

Log in

Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Although patients experience hair loss and dry skin which may be attributable to deficiency in essential fatty acids (EFAs), the impact of bariatric surgeries on EFA status is unknown.

Methods

This study aimed to assess plasma phospholipid fatty acid profiles following adjustable gastric banding (AGB), which restricts dietary fat intake, versus Roux-en-Y gastric bypass (RYGB), which also promotes fat malabsorption. Serial measures were obtained before and 1 and 6 months from women undergoing RYGB (N = 13) and AGB (N = 5). Measures included the composition of plasma fatty acids in phospholipids, dietary intake, and body fat mass. Friedman and Mann–Whitney tests were used to assess differences over time and between groups, respectively, p < 0.05.

Results

Dietary intake of fats decreased equally at 1 and 6 months following RYGB and AGB. By 6 months, the RYGB group lost more body fat. There were no remarkable changes in EFA in plasma phospholipids following AGB. However, following RYGB, a transient increase in 20:4N6 (+18 %) and a decrease in 20:3N6 at 1 (−47 %) and 6 months (−47 %) were observed. Similar changes were observed in N3 fatty acids following RYGB, including a transient increase in 22:6N3 (+11 %) and decreases in 20:5N3 (−79 and −67 % at 1 and 6 months, respectively). EFA status improved following surgery in the RYGB group.

Conclusions

We demonstrate alterations in plasma EFA following RYGB. The status of EFA improved, but the decrease in 20:5N3, the precursor for anti-inflammatory eicosanoids, may be a concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EFA:

Essential fatty acids

RYGB:

Roux-en-Y gastric bypass

AGB:

Adjustable gastric banding

AA:

Arachidonic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

LA:

Linoleic acid

ALA:

Alpha-linolenic acid

A-CTSI:

Atlanta Clinical and Translational Science Institute

BMI:

Body mass index

CRP:

C-reactive protein

FFA:

Free fatty acids

References

  1. Holman RT, Johnson SB, Hatch TF. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr. 1982;35:617–23.

    CAS  PubMed  Google Scholar 

  2. Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003;78:640–6.

    Google Scholar 

  3. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta 6, delta 5, and delta 9 desaturates. Annu Rev Nutr. 2004;24:345–76.

    Article  CAS  PubMed  Google Scholar 

  4. Araya J, Rodrigo R, Pettinelli P, et al. Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity (Silver Spring). 2010;18:1460–3.

    Article  CAS  Google Scholar 

  5. Brignardello J, Morales P, Diaz E, et al. Increase of plasma fatty acids without changes in n-6/n-3-PUFA ratio in asymptomatic obese subjects. Arch Latinoam Nutr. 2011;61:149–53.

    CAS  PubMed  Google Scholar 

  6. Blond JP, Henchiri C, Bezard J. Delta 6 and delta 5 desaturase activities in liver from obese Zucker rats at different ages. Lipids. 1989;24:389–95.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez Y, Giri M, Rottiers R, et al. Obese type 2 diabetics and obese patients have comparable plasma phospholipid fatty acid compositions deviating from that of healthy individuals. Prostaglandins Leukot Essent Fat Acids. 2004;71:303–8.

    Article  CAS  Google Scholar 

  8. Steffen BT, Steffen LM, Tracy R, et al. Obesity modifies the association between plasma phospholipid polyunsaturated fatty acids and markers of inflammation: the Multi-Ethnic Study of Atherosclerosis. Int J Obes. 2012;36:797–804.

    Article  CAS  Google Scholar 

  9. Mueller-Cunningham WM, Quintana R, Kasim-Karakas SE. An ad libitum, very low-fat diet results in weight loss and changes in nutrient intakes in postmenopausal women. J Am Diet Assoc. 2003;103:1600–6.

    Article  PubMed  Google Scholar 

  10. Noakes M, Clifton PM. Changes in plasma lipids and other cardiovascular risk factors during 3 energy-restricted diets differing in total fat and fatty acid composition. Am J Clin Nutr. 2000;71:706–12.

    CAS  PubMed  Google Scholar 

  11. USDA/HHS. Dietary guidelines for Americans, 2010. U.S. Government Printing Office. Washington, DC: 2010.

  12. Tang AB, Nishimura KY, Phinney SD. Preferential reduction in adipose tissue a-linolenic acid (18:3w3) during very low calorie dieting despite supplementation with 18:3w3. Lipids. 1993;28:987–93.

    Article  CAS  PubMed  Google Scholar 

  13. Cunnane SC, Ross R, Bannister JL, et al. β-oxidation of linoleate in obese men undergoing weight loss. Am J Clin Nutr. 2001;73:709–14.

    CAS  PubMed  Google Scholar 

  14. Phinney SD, Davis PG, Johnson SB, et al. Obesity and weight loss alter serum phospholipids in humans. Am J Clin Nutr. 1991;53:831–8.

    CAS  PubMed  Google Scholar 

  15. Holman RT, Adams CE, Nelson RA, et al. Patients with anorexia nervosa demonstrate deficiencies of selected fatty acid, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr. 1995;125:901–7.

    CAS  PubMed  Google Scholar 

  16. Sweene I, Rosling A, Tengblad S, et al. Essential fatty acid status in teenage girls with eating disorders and weight loss. Acta Paediatr. 2011;100:762–7.

    Article  Google Scholar 

  17. Christophe A, Vermeulen A. Effects of weight loss on the fatty acid composition of serum lipids in obese women. Ann Nutr Metab. 1992;36:336–42.

    Article  CAS  PubMed  Google Scholar 

  18. Adams TD, Stroup AM, Gress RE, et al. Cancer incidence and mortality after gastric bypass surgery. Obesity (Silver Spring). 2009;17:796–802.

    Article  Google Scholar 

  19. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  21. Moize V, Andreu A, Rodriguez L, et al. Protein intake and lean tissue mass retention following bariatric surgery. Clin Nutr. 2013;32:550–5.

    Article  CAS  PubMed  Google Scholar 

  22. Carlin AM, Rao DS, Yager KM, et al. Effect of gastric bypass surgery on vitamin D nutritional status. Surg Obes Relat Dis. 2006;2:638–42.

    Article  PubMed  Google Scholar 

  23. Ruz M, Carrasco F, Rojas P, et al. Iron absorption and iron status are reduced after Roux-en-Y gastric bypass. Am J Nutr. 2009;90:527–32.

    Article  CAS  Google Scholar 

  24. Gletsu-Miller N, Wright BN. Mineral malnutrition following bariatric surgery. Adv Nutr. 2013;4:506–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halawi A, Abiad F, Abbas O. Bariatric surgery and its effects on the skin and skin diseases. Obes Surg. 2013;23:408–13.

    Article  PubMed  Google Scholar 

  26. Coupaye M, Puchaux K, Bogard C, et al. Nutritional consequences of adjustable gastric banding and gastric bypass: a 1-year prospective study. Obes Surg. 2009;19:56–65.

    Article  PubMed  Google Scholar 

  27. Elizondo A, Araya J, Rodrigo R, et al. Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biol Res. 2008;41:59–68.

    Article  PubMed  Google Scholar 

  28. Kumar R, Lieske JC, Collazo-Clavell ML, et al. Fat malabsorption and increased oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery. 2011;149:654–61.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Odstrcil EA, Martinez JG, Santa Ana CA, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13.

    Article  CAS  PubMed  Google Scholar 

  30. Gletsu-Miller N, Hansen JM, Jones DP, et al. Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery. Obesity (Silver Spring). 2009;17:439–46.

    Article  CAS  Google Scholar 

  31. Lin E, Phillips LS, Ziegler TR, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007;56:735–42.

    Article  CAS  PubMed  Google Scholar 

  32. American-College-of-Surgeons. ACS BSCN accreditation program manual. https://www.facs.org/quality-programs/mbsaqip 26 May 2015.

  33. Lin E, Davis SS, Srinivasan J, et al. Dual mechanism for type-2 diabetes resolution after Roux-en-Y gastric bypass. Am Surg. 2009;75:498–502. discussion -3.

    PubMed  PubMed Central  Google Scholar 

  34. Anonymous. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.

    Google Scholar 

  35. Gletsu-Miller N, Kahn HS, Gasevic D, Liang Z, Frediani JK, Torres WE, Ziegler TR, Phillips LS, Lin E. Sagittal abdominal diameter and visceral adiposity: correlates of beta-cell function and dysglycemia in severely obese women. Obes Surg. 2013.

  36. Liang Y, Roede JR, Dikalov S, et al. Determination of ebselen-sensitive reactive oxygen metabolites (ebROM) in human serum based upon N, N'-diethyl-1,4-phenylenediamine oxidation. Clin Chim Acta. 2012;414:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohta A, Mayo MC, Kramer N, et al. Rapid analysis of fatty acids in plasma lipids. Lipids. 1990;25:742–7.

    Article  CAS  PubMed  Google Scholar 

  38. Antalis CJ, Stevens LJ, Campbell M, et al. Omega-3 fatty acid status in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fat Acids. 2006;75:299–308.

    Article  CAS  Google Scholar 

  39. Holman RT, Smythe L, Johnson S. Effect of sex and age on fatty acid composition of human serum lipids. Am J Clin Nutr. 1979;32:2390–9.

    CAS  PubMed  Google Scholar 

  40. Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity (Silver Spring). 2009;17 Suppl 1:S1–70.

    Google Scholar 

  41. Garg ML, Thomson AB, Clandinin MT. Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism. J Lipid Res. 1990;31:271–7.

    CAS  PubMed  Google Scholar 

  42. Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244:715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, le Roux CW. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg. 2013.

  44. Rossner S, Walldius G, Bjorvell H. Fatty acid composition in serum lipids and adipose tissue in severe obesity before and after six weeks of weight loss. Int J Obes. 1989;13:603–12.

    CAS  PubMed  Google Scholar 

  45. Kunesova M, Phinney S, Hainer V, et al. The responses of serum and adipose fatty acids to a one-year weight reduction regimen in female obese monozygotic twins. Ann N Y Acad Sci. 2002;967:311–23.

    Article  CAS  PubMed  Google Scholar 

  46. Tiikkainen M, Bergholm R, Rissanen A, et al. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am J Clin Nutr. 2004;79:22–30.

    CAS  PubMed  Google Scholar 

  47. Katz DP, Knittle JL. Effects of hypocaloric diet low in essential fatty acids on in vitro human adipose tissue prostaglandin production and essential fatty acid status. Nutrition. 1991;7:256–9.

    CAS  PubMed  Google Scholar 

  48. Kunesova M, Braunerova R, Hlavaty P, et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res. 2006;55:63–72.

    CAS  PubMed  Google Scholar 

  49. Hlavaty P, Kunesova M, Gojova M, et al. Change in fatty acid composition of serum lipids in obese females after short-term weight-reducing regimen with the addition of n-3 long chain polyunsaturated fatty acids in comparison to controls. Physiol Res. 2008;57 Suppl 1:S57–65.

    CAS  PubMed  Google Scholar 

  50. Haugaard SB, Vaag A, Hoy CE, et al. Desaturation of skeletal muscle structural and depot lipids in obese individuals during a very-low-calorie diet intervention. Obesity (Silver Spring). 2007;15:117–25.

    Article  CAS  Google Scholar 

  51. Phinney SD, Tang AB, Johnson SB, et al. Reduced adipose 18:3w3 with weight loss by very low calorie dieting. Lipids. 1990;25:798–806.

    Article  CAS  PubMed  Google Scholar 

  52. Stamatikos AD, Paton CM. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab. 2013;305:E767–75.

    Article  CAS  PubMed  Google Scholar 

  53. Demaria EJ, Winegar DA, Pate VW, et al. Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the Bariatric Outcomes Longitudinal Database. Ann Surg. 2010;252:559–66. discussion 66-7.

    PubMed  Google Scholar 

  54. Keidar A, Hershkop KJ, Marko L, et al. Roux-en-Y gastric bypass vs sleeve gastrectomy for obese patients with type 2 diabetes: a randomised trial. Diabetologia. 2013;56:1914–8.

    Article  PubMed  Google Scholar 

  55. Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. 2012;122:4667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ballantyne GH, Farkas D, Laker S, et al. Short-term changes in insulin resistance following weight loss surgery for morbid obesity: laparoscopic adjustable gastric banding versus laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2006;16:1189–97.

    Article  CAS  PubMed  Google Scholar 

  57. Poslusna K, Ruprich J, de Vries JH, et al. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr. 2009;101 Suppl 2:S73–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all study participants. We thank Marnie Van Meter and Mateusz Stochelski for their technical assistance for the fatty acid analysis. This work was supported by the National Institute of Health grants R03 DK067167 and R21 DK 075745 (to NGM), K24 RR023356 (to TRZ), and the Atlanta Clinical and Translational Science Institute grant UL1 RR025008.

Conflict of Interest

The authors declare that they have no competing interests.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nana Gletsu-Miller.

Additional information

Clinical Trial Registry: ClinicalTrials.gov #NCT00228579

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, R., Gasevic, D., Watson, E.M. et al. Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries. OBES SURG 26, 1237–1246 (2016). https://doi.org/10.1007/s11695-015-1876-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-015-1876-3

Keywords

Navigation