Skip to main content
Log in

Investigating the thermal decomposition differences between beet and cane sucrose sources

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Recently, thermal behavior differences between beet and cane sugars have been reported. Generally, cane sugars exhibited two endothermic DSC peaks, one small peak proceeded by one large peak; whereas, beet sugars exhibited only one large endothermic DSC peak. Previous research linked the presence of the small peak to the appearance of thermal decomposition components in analytical grade cane sucrose. However, no research was found exploring this relation for other sucrose sources. Thus, our objective was to investigate the possible association between the aforementioned DSC curve differences and the appearance of selected thermal decomposition components in a wide variety of sucrose samples, including analytical grade cane, white refined commercial beet and cane, and laboratory-recrystallized beet, using HPLC analysis. A strong, predictive relation between the DSC Tmonset value and the temperature at which the initial thermal decomposition component(s) (TDConset) was detected was found for both beet and cane sugars. DSC Tmonset and TDConset values occurred at substantially lower temperatures for cane (150 °C to 160 °C and 170 °C, respectively) compared to beet (188 °C and 200 °C, respectively) samples, establishing that, overall, beet sucrose sources exhibit greater thermal stability than cane. We hypothesize that this wide variation in thermal stability is related to differences in crystal composition and chemistry and merit further investigation. Understanding the thermal behavior differences between and within beet and cane sugars and the potential impact on processing of sugar containing products is of substantial value to the food industry, and suggests that additional factors besides market price need to be taken into consideration during sucrose source selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Acree, C. Lee, R.M. Butts, J. Barnard, Geosmin, the earthy component of table beet odor. J. Agric. Food Chem. 24, 430–431 (1976)

    Article  CAS  Google Scholar 

  2. T.H. Parliment, M.G. Kolor, I.Y. Maing, Identification of the major volatile components of cooked beets. J. Food Sci. 42, 1592–1593 (1977)

    Article  CAS  Google Scholar 

  3. W.C. Monte, J.A. Maga, Flavor chemistry of sucrose. Sugar Technol. Rev. 8, 181–204 (1982)

    CAS  Google Scholar 

  4. R. Marsili, N. Miller, G.J. Kilmer, R.E. Simmons, Identification and quantitation of the primary chemicals responsible for the characteristic malodor of beet sugar by purge and trap GC-MS-OD techniques. J. Chromatogr. Sci. 32, 165–171 (1994)

    Article  Google Scholar 

  5. P. Pihlsgård, The Properties of Sugar Focusing on Odours and Flavours: A Literature Review (SIK Institutet för livsmedel och bioteknik, Gothenburg, 1997), pp. 634

    Google Scholar 

  6. V. Magne, M. Mathlouthi, B. Robilland, Determination of some organic acids and inorganic anions in beet sugar by ionic HPLC. Food Chem. 61, 449–453 (1998)

    Article  CAS  Google Scholar 

  7. B.L. Urbanus, G.O. Cox, E.J. Eklund, C.M. Ickes, S.J. Schmidt, S.Y. Lee, Sensory differences between beet and cane sugar sources. J. Food Sci. 79, 1763–1768 (2014)

    Article  Google Scholar 

  8. B.L. Urbanus, S.J. Schmidt, S.Y. Lee, Sensory differences between product matrices made with beet and cane sugar sources. J. Food Sci. 79, 2354–2361 (2014)

    Article  Google Scholar 

  9. N. Reitz, Investigating the chemical basis of functionality differences between beet and cane sugar sources in a model egg white foam and others products, Masters thesis, University of Illinois at Urbana-Champaign, Champaign, 2016

  10. Y. Lu, J.W. Lee, L. Thomas, S.J. Schmidt, Differences in the thermal behavior of beet and cane sugars, in Proceedings of the 74th Annual Institute of Food Technologists, Chicago, IL, 2013

  11. Y. Lu, L. Thomas, S.J. Schmidt, Differences in the thermal behavior of beet and cane sucrose sources. J. Food Eng. 201, 57–70 (2017)

    Article  CAS  Google Scholar 

  12. H. Hirschmüller, in Principles of Sugar Technology, 1st edn. ed. By P. Honig. Chemical properties of sucrose (Elsevier, New York, 1953), p. 790

    Google Scholar 

  13. W. Mauch, Chemical properties of sucrose. Sugar Technol. Rev. 1, 239–290 (1971)

    CAS  Google Scholar 

  14. G.N. Richards, F. Shafizadeh, Mechanism of thermal degradation of sucrose. A preliminary study. Aust. J. Chem. 31, 1825–1832 (1978)

    Article  CAS  Google Scholar 

  15. G.N. Richards, Initial steps in thermal degradation of sucrose. Int. Sugar J. 88, 145–148 (1986)

    Google Scholar 

  16. I. Šimkovic, I. Šurina, M. Vričan, Primary reactions of sucrose thermal degradation. J. Anal. Appl. Pyrolysis 70, 493–504 (2003)

    Article  Google Scholar 

  17. M. Quintas, C. Guimarães, J. Baylina, T.R.S. Brandão, C.L.M. Silva, Multiresponse modelling of the caramelisation reaction. Innov. Food Sci. Emerg. Technol. 8, 306–315 (2007)

    Article  CAS  Google Scholar 

  18. J.W. Lee, L.C. Thomas, S.J. Schmidt, Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). J. Agric. Food Chem. 59, 684–701 (2011)

    Article  CAS  Google Scholar 

  19. J.W. Lee, L.C. Thomas, J. Jerrell, H. Feng, K.R. Cadwallader, S.J. Schmidt, Investigation of thermal decomposition as the kinetic process that causes the loss of crystalline structure in sucrose using a chemical analysis approach (part ii). J. Agric. Food Chem. 59, 702–712 (2011)

    Article  CAS  Google Scholar 

  20. Y.H. Roos, F. Franks, M. Karel, T.P. Labuza, H. Levine, M. Mathlouthi, D. Reid, E. Shalaev, L. Slade, Comment on the melting and decomposition of sugars. J. Agric. Food Chem. 60, 10359–10362 (2012)

    Article  CAS  Google Scholar 

  21. S.J. Schmidt, L.C. Thomas, J.W. Lee, Response to comment on the melting and decomposition of sugars. J. Agric. Food Chem. 60, 10363–10371 (2012)

    Article  CAS  Google Scholar 

  22. Y.H. Roos, M. Karel, T.P. Labuza, H. Levine, M. Mathlouthi, D. Reid, E. Shalaev, L. Slade, Melting and crystallization of sugars in high-solids systems. J. Agric. Food Chem. 61, 3167–3178 (2013)

    Article  CAS  Google Scholar 

  23. M. Taylor, The solubility at high temperatures of pure sucrose in water. J. Chem. Soc. 1, 1678–1683 (1947)

    Article  CAS  Google Scholar 

  24. S. Ouiazzane, B. Messnaoui, S. Abderafi, J. Wouters, T. Bounahmidi, Estimation of sucrose crystallization kinetics from batch crystallizer data. J. Cryst. Growth 310, 798–803 (2008)

    Article  CAS  Google Scholar 

  25. Y. Lu, Investigating the thermal behavior differences between beet and cane sugar sources. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign, 2016

  26. S.T. Beckett, M.G. Francesconi, P.M. Geary, G. Mackenzie, A.P. Maulny, DSC study of sucrose melting. Carbohydr. Res. 341, 2591–2599 (2006)

    Article  CAS  Google Scholar 

  27. S. Kishihara, M. Okuno, S. Fujii, K. Kawasaki, T. Nishiura, An opinion on structure of sucrose crystal, in Proceedings of Research Society Japan Sugar Refineries Technology, vol 49, pp. 1–8, 2001

  28. M. Okuno, S. Kishihara, M. Otsuka, S. Fujii, K. Kawasaki, Variability of melting behavior of commercial granulated sugar measured by differential scanning calorimetry. Int. Sugar J. 105, 29–35 (2003)

    CAS  Google Scholar 

  29. Y.S. Lin, Master thesis “Two Conformational Polymorphs of Sucrose”, National Central University, Taoyuan City, 2007

  30. T. Lee, Y.S. Lin, Dimorphs of sucrose. Int. Sugar J. 109, 440–445 (2007)

    CAS  Google Scholar 

  31. T. Lee, G.D. Chang, Sucrose conformational polymorphism: a jigsaw puzzle with multiple routes to a unique solution. Cryst. Growth Des. 9, 3551–3561 (2009)

    Article  CAS  Google Scholar 

  32. E.C. Reynhardt, An NMR, DSC and X-ray investigation of the disaccharides sucrose, maltose and lactose. Mol. Phys. 69, 1083–1097 (1990)

    Article  CAS  Google Scholar 

  33. K. Kawakami, K. Miyoshi, N. Tamura, T. Yamaguchi, Y. Ida, Crystallization of sucrose glass under ambient conditions: evaluation of crystallization rate and unusual melting behavior of resultant crystals. J. Pharm. Sci. 95, 1354–1363 (2006)

    Article  CAS  Google Scholar 

  34. G. Eggleston, B.J. Trask-Morrell, J.R. Vercellotti, Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose–salt residues. J. Agric. Food. Chem. 44, 3319–3325 (1996)

    Article  CAS  Google Scholar 

  35. V.S. Papkov, Heat resistance and thermal stability of polymers, in The Great Soviet Encyclopedia, 3rd edn. (1970–1979)

  36. J.R. Davis, ASM Specialty Handbook: Heat-Resistant Materials. (ASM International, Materials Park, 1997), pp. 597

  37. C.D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal. Chem. 33, 77–79 (1961)

    Article  CAS  Google Scholar 

  38. M. Kamoda, Studies on the properties of sucrose crystal, in Proceedings of Research Society Japan Sugar Refineries Technology, vol 27, pp. 158–238, 1960

  39. M. Okuno, S. Kishihara, S. Fujii, K. Kawasaki, Analysis of structure of sucrose crystal by differential scanning calorimetry, in Proceedings of Research Society Japan Sugar Refineries Technology, vol 50, pp. 11–18, 2002

  40. M. Okuno, S. Kishihara, S. Fujii, K. Kawasaki, Melting point of sucrose crystal prepared in sucrose solution containing various impurities, in Proceedings of Research Society Japan Sugar Refineries Technology, vol 50, 19–27, 2002

  41. Maulny, Co-crystallization of sugars. Ph.D. Thesis, Department of Chemistry, University of Hull, Hull, UK, 2003

  42. M. Manley-Harris, G.N. Richards, Formation of trisaccharides (kestoses) by pyrolysis of sucrose. Carbohydr. Res. 219, 101–113 (1991)

    Article  CAS  Google Scholar 

  43. D. Harvey, Modern Analytical Chemistry, (McGraw-Hill, New York, 2000), pp. 861

    Google Scholar 

  44. H.E.C. Powers, Growth of sucrose crystals. Nature 178, 139–140 (1956)

    Article  CAS  Google Scholar 

  45. H.E.C. Powers, Sucrose crystal inclusions. Nature 182, 715–717 (1958)

    Article  CAS  Google Scholar 

  46. T.W. Richards, The inclusion and occlusion of solvent in crystals: an insidious source of error in quantitative chemical investigation. Proc. Am. Philos. Soc. 42, 28–36 (1903)

    Google Scholar 

  47. H.E.C. Powers, Inclusions. Int. Sugar J. 61, 41–44 (1959)

    Google Scholar 

  48. H.E.C. Powers, Sucrose crystal: inclusions and structure. Sugar Technol. Rev. 1, 85–190 (1970)

    CAS  Google Scholar 

  49. J.M. Thomas, J.O. Williams, Lattice imperfections in organic solids. Part 2. sucrose. Trans. Faraday Soc. 63, 1922–1928 (1967)

    Article  CAS  Google Scholar 

  50. D.L. Mackintosh, E.T. White, Enclave inclusions in sugar crystals, in Proceedings Queensland Society of Sugar Cane Technologists, 35th Conference, pp. 245–253, 1968

  51. G.C. Eastmond, Solid-state polymerization. Prog. Polym. Sci. 2, 13–46 (1970)

    Article  Google Scholar 

  52. S.Y. Guo, E.T. White, Measurement of inclusions in sugar crystals using a density gradient column, in Proceedings of the Australian Society of Sugar Cane Technology, pp. 219–224, 1983

  53. I.M. Grimsey, T.M. Herrington, The formation of inclusions in sucrose crystals. Int. Sugar J. 96, 504–514 (1994)

    CAS  Google Scholar 

  54. G. Vaccari, The sugar crystal: a chameleon. 2010 SPRI Award Presentation, in Proceedings of the SPRI 2010 Conference on Sugar Processing, New Orleans, LA, 2010

  55. S.V. Shah, Y.M. Chakradeo, A note on the melting point of cane sugar. Curr. Sci. 4, 652–653 (1936)

    CAS  Google Scholar 

  56. R.S. Shallenberger, G.G. Birch, Sugar Chemistry (AVI Publishing Company Inc., Westport, 1975), p. 218

    Google Scholar 

  57. M. Hurtta, I. Pitkänen, J. Knuutinen, Melting behaviour of d-sucrose, d-glucose and d-fructose. Carbohydr. Res. 339, 2267–2273 (2004)

    Article  CAS  Google Scholar 

  58. A. Magoń, A. Wurm, C. Schick, P. Pangloli, S. Zivanovic, M. Skotnicki, M. Pyda, Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim. Acta 589, 183–196 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the expert assistance of Mary An Godshall, retired, formerly with the Sugar Processing Research Institute, Inc., (SPRI, New Orleans, LA). Thanks also go to SPRI for supplying the high ash beet sucrose sample. The assistance of Mark Muhonen, formerly with United Sugar Corporation (Clewiston, FL) is gratefully acknowledged, as well as the samples of US beet and US cane. In addition, the authors appreciate the assistance of Dr. Eliana Rosales, former Ph.D. student in the lab of Dr. Nicki Engeseth, in regards to the recrystallization work carried out in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly J. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Thomas, L.C., Jerrell, J.P. et al. Investigating the thermal decomposition differences between beet and cane sucrose sources. Food Measure 11, 1640–1653 (2017). https://doi.org/10.1007/s11694-017-9544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9544-z

Keywords

Navigation