Skip to main content
Log in

The Craniolingual Morphology of Waterfowl (Aves, Anseriformes) and Its Relationship with Feeding Mode Revealed Through Contrast-Enhanced X-Ray Computed Tomography and 2D Morphometrics

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Within Anseriformes, waterfowl (ducks, geese, and swans) exhibit three specialized feeding modes that are distinctive among Aves: filter-feeding with fine and dense keratinous lamellae on a flat, mediolaterally expanded bill; cropping or grazing vegetation with large and robust lamellae with a dorsoventrally expanded bill; and sharp lamellae associated with a narrow bill used in acquiring mixed invertebrates and fish underwater mainly by grasping. Here we assess morphometric variation in cranial and hyolingual structures as well as hyolingual myology in a diverse sample of Anatidae to explore the relationship of tongue variation and feeding mode. Phylogenetically informed principal component analysis (phyl.PCA) of cranial-lingual measurements for 67 extant and two extinct anatids recovers grazers and filter-feeding taxa in largely distinct areas of morphospace, while underwater graspers and other mixed feeders show less distinct clustering. The relationship between morphometric differences in skeletal features and muscular variation was further explored through a reassessment of hyolingual musculature enabled by contrast-enhanced X-ray computed tomography (CT) imagery acquired from three exemplar species (Branta canadensis, Chen caerulescens, and Aythya americana) with distinctive ecologies and morphologies of the bony hyoid. Data for these duck and geese exemplars reveal further significant, and previously unstudied, morphological differences between filter-feeding and grazing species. Grazers have a larger hyolingual apparatus with highly-developed extrinsic hyoid muscles; while filter-feeding species are characterized by relatively more diminutive extrinsic hyoid muscles and larger intrinsic hyoid muscles. The feeding modes of two extinct taxa (i.e., Presbyornis and Thambetochen) were also estimated from morphometric data. The results indicate a derived terrestrial browsing or grazing ecology for Thambetochen but do not unequivocally support a specialized filter-feeding ecology for Presbyornis, which is recovered with mixed feeders including swans. The combination of detailed, CT-mediated acquisition of fine muscular anatomy with morphometric approaches shows promise for illuminating form–function relationships in extant taxa more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baldassarre, G. A., Bolen, E. G., & Sayre, T. R. (2006). Waterfowl ecology and management. Malabar, FL: Krieger.

    Google Scholar 

  • Batt, B. D. J., Afton, A. D., Anderson, M. G., Ankney, C. D., Johnson, D. H., Kadlec, J. A., et al. (1992). Ecology and management of breeding waterfowl. Minneapolis and London: University of Minnesota Press.

    Google Scholar 

  • Blackburn, D. C., Siler, C. D., Diesmos, A. C., McGuire, J. A., Cannatella, D. C., & Brown, R. M. (2013). An adaptive radiation of frogs in a Southeast Asian island archipelago. Evolution, 67, 2631–2646.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carboneras, C. (1992). Anseriformes. In J. Del Hoyo, A. Elliott, & J. Sargatal (Eds.), Handbook of the birds of the world (1st ed., Vol. 1, pp. 527–628). Barcelona: Lynx Edicions.

    Google Scholar 

  • Diogo, R. (2004). Muscles versus bones: Catfishes as a case study for a discussion on the relative contribution of myological and osteological features in phylogenetic reconstructions. Animal Biology-Leiden, 54, 373–392.

    Article  Google Scholar 

  • Donne-Goussé, C., Laudet, V., & Hänni, C. (2002). A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Molecular Phylogenetics and Evolution, 23, 339–356.

    Article  PubMed  Google Scholar 

  • Dunning, J. C. (2008). CRC handbook of avian body masses (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Durant, D. (2013). The digestion of fibre in herbivorous Anatidae: A review. Wildfowl, 54, 7–24.

    Google Scholar 

  • Dyreson, E., & Maddison, W. P. (2003). Rhetenor package for morphometrics for the Mesquite system. version 1.0. http://mesquiteproject.org.

  • Erickson, P. G. P. (1997). Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal of the Linnean Society, 121, 429–483.

    Article  Google Scholar 

  • Feduccia, A. (1999). The origin and evolution of birds (2nd ed.). New Haven, CT: Yale Univ Press.

    Google Scholar 

  • Garland, T, Jr, Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18–32.

    Article  Google Scholar 

  • George, J. C., & Berger, A. J. (1966). Avian myology. New York and London: Academic Press.

    Google Scholar 

  • Gibbs, S., Collard, M., & Wood, B. (2000). Soft-tissue characters in higher primate phylogenetics. Proceedings of the National Academy of Sciences, 97, 11130–11132.

    Article  CAS  Google Scholar 

  • Givnish, T. J., Sytsma, K. J., Smith, J. F., & Hahn, W. J. (1994). Thorn-like prickles and heterophylly in Cyanea: Adaptations to extinct avian browsers on Hawaii? Proceedings of the National Academy of Sciences, 91, 2810–2814.

    Article  CAS  Google Scholar 

  • Gonzalez, J., Düttmann, H., & Wink, M. (2009). Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology, 279, 310–318.

    Article  Google Scholar 

  • Goodman, D. C., & Fisher, H. I. (1962). Functional anatomy of the feeding apparatus in waterfowl (Aves: Anatidae). Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Green, A. J. (1992). The status and conservation of the White-winged Wood Duck Cairina scutulata. Special publication no. 17. Slimbridge: IWRB.

    Google Scholar 

  • Gurd, D. B. (2007). Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology. The American Naturalist, 169, 334–343.

    Article  PubMed  Google Scholar 

  • Harvey, P. H., & Pagel, M. (1991). The comparative method in evolutionary biology. New York, Oxford: University Press.

    Google Scholar 

  • Homberger, D. G., & Meyers, R. A. (1989). Morphology of the lingual apparatus of the domestic chicken, Gallus gallus, with special attention to the structure of the fasciae. American Journal of Anatomy, 186, 217–257.

    Article  CAS  PubMed  Google Scholar 

  • Iwaniuk, A. N., Nelson, J. E., James, H. F., & Olson, S. L. (2004). A comparative test of the correlated evolution of flightlessness and relative brain size in birds. Journal of Zoology, 263, 317–327.

    Article  Google Scholar 

  • Iwasaki, S., Tomoichiro, A., & Chiba, A. (1997). Ultrastructureal study of the keratinization of the dorsal epithelium of the tongue of Middendorff’s Bean Goose, Anser fabalis middendorffii (Anseres, Antidae). The Anatomical Record, 247, 149–163.

    Article  CAS  PubMed  Google Scholar 

  • Jackowiak, H., Skieresz-Szewczyk, K., Godynicki, S., Iwasaki, S. I., & Meyer, W. (2011). Functional morphology of the tongue in the domestic goose (Anser anser f. Domestica). The Anatomical Record, 294, 1574–1584.

    Article  PubMed  Google Scholar 

  • James, H. F., & Burney, D. A. (1997). The diet and ecology of Hawaii’s extinct flightless waterfowl: Evidence from coprolites. Biological Journal of the Linnean Society, 62, 279–297.

    Article  Google Scholar 

  • Jeffery, N., Stephenson, R., Gallagher, J., Jarvis, J., & Cox, P. (2011). Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres. Journal of Biomechanics, 44, 189–192.

    Article  PubMed  Google Scholar 

  • Jetz, W., et al. (2012). The global diversity of birds in space and time. Nature, 491, 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Kear, J. (2005). Ducks, geese and swans: Species accounts (Cairina to Mergus) (Vol. 2). Oxford: University Press.

    Google Scholar 

  • Kehoe, F. P., & Thomas, V. G. (1987). A comparison of interspecific differences in the morphology of the external and internal feeding apparatus among North American Anatidae. Canadian Journal of Zoology, 65, 1818–1822.

    Article  Google Scholar 

  • Köntges, G., & Lumsden, A. (1996). Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development, 122, 3229–3242.

    PubMed  Google Scholar 

  • Kooloos, J. G. M., Kraaijeveld, A. R., Langenbach, G. E. J., & Zweers, G. A. (1989). Comparative mechanics of filter feeding in Anas platyrhynchos, Anas clypeata and Aythya fuligula (Aves, Anseriformes). Zoomorphology, 108, 269–290.

    Article  Google Scholar 

  • Kooloos, J. G. M., & Zweers, G. A. (1991). Integration of pecking, filter feeding and drinking mechanisms in waterfowl. Acta Biotheoretica, 39, 107–140.

    Article  CAS  PubMed  Google Scholar 

  • Lagerquist, B. A., & Ankney, C. D. (1989). Interspecific differences in bill and tongue morphology among diving ducks (Aythya spp., Oxyura jamaicensis). Canadian Journal of Zoology, 67, 2694–2699.

    Article  Google Scholar 

  • Leggitt, V. L., Buchheim, H., & Biaggi, R. E. (1998). The stratigraphic setting of three Presbyornis nesting sites: Eocene Fossil Lake, Lincoln County, Wyoming. National Park Service Paleontological Research, 3, 61–68.

    Google Scholar 

  • Livezey, B. C. (1997a). A phylogenetic classification of waterfowl, including selected fossil species. Annals of Carnegie Museum, 66, 457–496.

    Google Scholar 

  • Livezey, B. C. (1997b). A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society, 121, 361–428.

    Google Scholar 

  • Lovvorn, J., Liggins, G. A., Borstad, M. H., Calisal, S. M., & Mikkelsen, J. (2001). Hydrodynamic drag of diving birds: Effects of body size, body shape and feathers at steady speeds. Journal of Experimental Biology, 204, 1547–1557.

    CAS  PubMed  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2011). Mesquite: A modular system for evolutionary analysis. Version, 2, 75.

    Google Scholar 

  • Metscher, B. D. (2009). MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology, 9, 11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Monteiro, L. R. (2013). Morphometrics and the comparative method: Studying the evolution of biological shape. Hystrix, the Italian Journal of Mammalogy, 24, 25–32.

    Google Scholar 

  • Nudds, T. D., Elmberg, J., Pöysä, H., Sjöberg, K., & Nummi, P. (2000). Ecomorphology in breeding Holarctic dabbling ducks: The importance of lamellar density and body length varies with habitat type. Oikos, 91, 583–588.

    Article  Google Scholar 

  • Nummi, P. (1993). Food-niche relationships of sympatric mallards and green-winged teals. Canadian Journal of Zoology, 71, 49–55.

    Article  Google Scholar 

  • Olson, S. L., & Feduccia, A. (1980). Presbyornis and the origin of the Anseriformes. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Olson, S. L., & James, H. E. (1991). Descriptions of 32 new species of Hawaiian birds. Part I. Non-Passeriformes. Ornithological Monograph, 45, 1–88.

    Article  Google Scholar 

  • Owen, M., & Black, J. M. (1990). Waterfowl ecology. London: Blackie and Son Ltd.

    Google Scholar 

  • Polly, P. D., Lawing, A. M., Fabre, A. C., & Goswami, A. (2013). Phylogenetic principal components analysis and geometric morphometrics. Hystrix, the Italian Journal of Mammalogy, 24, 33–41.

    Google Scholar 

  • Pöysä, H. (1983). Morphology-mediated niche organization in a guild of dabbling ducks. Ornis Scandinavica, 14, 317–326.

    Article  Google Scholar 

  • Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63, 3258–3268.

    Article  PubMed  Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Article  Google Scholar 

  • Rylander, M. K., & Bolen, E. G. (1974). Feeding adaptations in whistling ducks (Dendrocygna). The Auk, 91, 86–94.

    Article  Google Scholar 

  • Sorenson, M. D., Cooper, A., Paxinos, E. E., Quinn, T. W., James, H. F., Olson, S. L., et al. (1999). Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266, 2187–2193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki, M., & Nomura, S. (1975). Electromyographic studies on the deglutition movements in the fowl. The Japanese Journal of Veterinary Science, 37, 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Tome, M. W., & Wrubleski, D. A. (1988). Underwater foraging behavior of canvasbacks, lesser scaups, and ruddy ducks. Condor, 90, 168–172.

    Article  Google Scholar 

  • Tremblay, S., & Couture, R. (1986). Bucco-lingual morphology of a guild of dabbling ducks. Canadian Journal of Zoology, 64, 2176–2180.

    Article  Google Scholar 

  • Van Der Leeuw, A. H. J., Kurk, K., Snelderwaard, P. C., Bout, R. G., & Berkhoudt, H. (2003). Conflicting demands on the trophic system of Anseriformes and their evolutionary implications. Animal Biology-Leiden, 53, 259–301.

    Article  Google Scholar 

  • Van Der Meij, M. A. A., & Bout, R. G. (2004). Scaling of jaw muscle size and maximal bite force in finches. Journal of Experimental Biology, 207, 2745–2753.

    Article  PubMed  Google Scholar 

  • Vanden Berge, J. C., & Zweers, G. A. (1993). Myologia. In J. J. Baumel, A. S. King, J. E. Breazile, H. E. Evans, & J. C. Vanden Berge (Eds.), Handbook of avian anatomy: Nomina anatomica avium (2nd ed., pp. 189–247). Cambridge, MA: Publications of the Nuttall Ornithological Club.

    Google Scholar 

  • Witmer, L. M. (1995). The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In J. J. Thomason (Ed.), Functional morphology in vertebrate paleontology (pp. 19–33). New York: Cambridge University Press.

    Google Scholar 

  • Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R., & Witmer, L. M. (2011). Evolution of olfaction in non-avian theropod dinosaurs and birds. Proceedings of the Royal Society B: Biological Sciences, 278, 3625–3634.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zweers, G. A. (1974). Structure movement and myography of the feeding apparatus of the Mallard (Anas platyrhynchos L.). Netherlands Journal of Zoology, 24, 323–467.

    Article  Google Scholar 

  • Zweers, G. A., Gerritsen, A. F. C., & van Kranenburg-Voogd, P. J. (1977). Mechanics of feeding of the Mallard (Anas platyrhynchos L., Aves, Anseriformes). Contributions to Vertebrate Evolution, 3, 1–109.

    Google Scholar 

Download references

Acknowledgments

We are grateful to H. James and C. Milensky for hosting the author (Z.L.) during his visits to the Smithsonian Institution (NMNH); we are also grateful to H. James, C. Milensky and P. Sweet in accessing skeletal specimens in NMNH and AMNH. We thank E. Theriot (Texas Memorial Museum) for assistance with the acquisition of key extant specimens. We are grateful to C. Sagebiel and K. Bader for accessing specimens in TMM Collections at The University of Texas Vertebrate Paleontology Laboratory, and T. LaDuc for using Laboratory space of Texas Natural History Collections (TNHC) for specimen processing. We are grateful to M. Colbert for acquiring excellent CT scans of these specimens; X. Wang, R. Rong and J. Mitchell for their discussion and comments. This research was funded by the Jackson School of Geosciences at the University of Texas at Austin (J.A.C.) as well as a Predoctoral Fellowship from the Smithsonian Institution to Z. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Skeletal measurements of the hyoid apparatus and skull, feeding types and body mass data used in the phylogenetically informed principle component analysis. (XLSX 21 kb)

Appendix 2

Phylo.tree files used in the three analyses. Selected phylogeny from “Birdtree.org” (Jetz et al. 2012), Livezey (1997a, b) and Sorenson et al. (1999). (DOCX 13 kb)

Appendix 3

Loadings and variance explained by phylogenetic principal component analyses of the phylogenetically size-corrected measurements. (CSV 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Clarke, J.A. The Craniolingual Morphology of Waterfowl (Aves, Anseriformes) and Its Relationship with Feeding Mode Revealed Through Contrast-Enhanced X-Ray Computed Tomography and 2D Morphometrics. Evol Biol 43, 12–25 (2016). https://doi.org/10.1007/s11692-015-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9345-4

Keywords

Navigation