Skip to main content
Log in

Family-Level Divergences in the Stinging Wasps (Hymenoptera: Aculeata), with Correlations to Angiosperm Diversification

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Diversification in insects has often been linked to the evolution of angiosperms. The majority of studies reporting this link, however, have been done on herbivorous insects. It remains unclear if the diversification of angiosperms was also influential in the diversification of species-rich, carnivorous insect groups. Here we investigate the timing of the origin and diversification in the stinging wasps (Hymenoptera: Aculeata). We employ a Bayesian Markov chain Monte Carlo relaxed clock approach to estimate divergence times for 13 wasp families and eight superfamilies. Divergence times are calibrated with 12 fossils representing groups in various lineages. Our results indicate that many of the modern aculeate families originated during the Cretaceous and in concert with the diversification of angiosperms. This similarity between diversification ages in wasps and in angiosperms may be due to an increased habitat complexity and prey diversity that early angiosperm forests provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bell, C. D., Soltis, D. E., & Soltis, P. S. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97, 1296–1303.

    Article  PubMed  Google Scholar 

  • Brady, S. G., Larkin, L., & Danforth, B. N. (2009). Bees, ants, and stinging wasps (Aculeata). In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 264–269). New York: Oxford University Press.

    Google Scholar 

  • Brady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences, 103, 18172–18177.

    Article  CAS  Google Scholar 

  • Brothers, D. J. (2003). The first fossil Ephutini (Hymenoptera: Mutillidae), a new species of Ephuta SAY from Dominican amber. Acta Zoologica Cracoviensia, 46, 101–107.

    Google Scholar 

  • Carpenter, J. M., & Rasnitsyn, A. P. (1990). Mesozoic Vespidae. Psyche, 97, 1–20.

    Article  Google Scholar 

  • Cockerell, T. (1917). Arthropods in Burmese amber. Psyche, 24, 40–44.

    Article  Google Scholar 

  • Cooper, A., & Fortey, R. (1998). Evolutionary explosions and the phylogenetic fuse. Trends in Ecology & Evolution, 13, 151–156.

    Article  CAS  Google Scholar 

  • Danforth, B. N., Brady, S. G., Sipes, S. D., & Pearson, A. (2004). Single-copy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology, 53, 309–326.

    Article  PubMed  Google Scholar 

  • Danforth, B. N., & Poinar, G. O. (2011). Melittosphex burmensis (Apoidea: Melittosphecidae): Detailed description of the morphology, classification, antiquity, and implications for bee evolution. Journal of Paleontology, 85, 882–891.

    Article  Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.

    Article  PubMed  Google Scholar 

  • Engel, M. S. (2000). A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296, 1–11.

    Article  Google Scholar 

  • Foottit, R. G., & Adler, P. H. (2009). Insect biodiversity: Science and society. New York: Blackwell Publishing.

    Book  Google Scholar 

  • Forister, M. L., & Feldman, C. R. (2011). Phylogenetic cascades and the origins of tropical diversity. Biotropica, 43, 270–278.

    Article  Google Scholar 

  • Genise, J. F., & Verde, M. (2000). Corimbatichnus fernandezi: A cluster of fossil bee cells from the late cretaceous-early tertiary of Uruguay. Ichnos, 7, 115–125.

    Article  Google Scholar 

  • Goulet, H., & Huber, J. T. (1993). Hymenoptera of the world: an identification guide to families. Ottawa: Agriculture Canada.

    Google Scholar 

  • Grimaldi, D. (1999). The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86, 373–406.

    Article  Google Scholar 

  • Grimaldi, D., & Agosti, D. (2000). A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences, 97, 13678.

    Article  CAS  Google Scholar 

  • Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press.

    Google Scholar 

  • Grimaldi, D. A., Maisey, J. G., McCafferty, W. P., Carle, F. L., Wighton, D. C., Popham, E. J., et al. (1990). Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin of the American Museum of Natural History, 195, 123–153.

    Google Scholar 

  • Lelej, A. (1986). Males of the genus Protomutilla (Hymenoptera, Mutillidae) from Baltic amber. Paleontologicheskiy Zhurnal, 4, 104–106.

    Google Scholar 

  • Michener, C. D., & Grimaldi, D. A. (1988). A Trigona from Late Cretaceous Amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates, 2917, 1–10.

    Google Scholar 

  • Michez, D., Vanderplanck, M., & Engel, M. S. (2012). Fossil bees and their plant associates. In S. Patiny (Ed.), Evolution of plant-pollinator relationships. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006). Phylogeny of the ants: Diversification in the age of angiosperms. Science, 312, 101.

    Article  PubMed  CAS  Google Scholar 

  • Ober, K., & Heider, T. (2010). Phylogenetic diversification patterns and divergence times in ground beetles (Coleoptera: Carabidae: Harpalinae). BMC Evolutionary Biology, 10, 262.

    Article  PubMed  Google Scholar 

  • Penney, D. (2004). Does the fossil record of spiders track that of their principal prey, the insects. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94, 275–281.

    Google Scholar 

  • Pie, M. R., & Tschá, M. K. (2009). The macroevolutionary dynamics of ant diversification. Evolution, 63, 3023–3030.

    Article  PubMed  Google Scholar 

  • Pilgrim, E. M., Von Dohlen, C. D., & Pitts, J. P. (2008). Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta, 37, 539–560.

    Article  Google Scholar 

  • Pitts, J. P., Wilson, J. S., & von Dohlen, C. D. (2010). Evolution of the nocturnal Nearctic Sphaeropthalminae velvet ants (Hymenoptera: Mutillidae) driven by Neogene orogeny and Pleistocene glaciation. Molecular Phylogenetics and Evolution, 56, 134–145.

    Article  PubMed  Google Scholar 

  • Poinar, G., & Danforth, B. (2006). A fossil bee from Early Cretaceous Burmese amber. Science, 314, 614.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A., & Drummond, A. J. (2007). Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer.

  • Rasnitsyn, A. (1986). Review of the fossil Tiphiidae, with description of a new species (Hymenoptera). Psyche, 93, 91–102.

    Article  Google Scholar 

  • Rasnitsyn, A. P. (2000). An extremely primitive aculeate wasp in the Cretaceous amber from New Jersey (Vespida: ?Sierolomorphidae). In D. Grimaldi (Ed.), Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey (pp. 327–332). Leiden, The Netherlands: Backhuys Publishers.

    Google Scholar 

  • Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution, 19, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., & Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Selden, P. A., Shear, W. A., & Bonamo, P. M. (1991). A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology, 34, 241–281.

    Google Scholar 

  • Shapiro, B., Rambaut, A., & Drummond, A. J. (2006). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Molecular Biology and Evolution, 23, 7–9.

    Article  PubMed  CAS  Google Scholar 

  • Weitschat, W., & Wichard, W. (2002). Atlas of plants and animals in Baltic amber. Munich, Germany: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Utah Agricultural Experiment Station, Utah State University, Logan, Utah, and is approved as journal paper no. 8372. This work was also supported by the National Science Foundation award DEB-0743763 to JPP and CDvD and DEB-1020509 and DEB-1050726 to MLF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.S., von Dohlen, C.D., Forister, M.L. et al. Family-Level Divergences in the Stinging Wasps (Hymenoptera: Aculeata), with Correlations to Angiosperm Diversification. Evol Biol 40, 101–107 (2013). https://doi.org/10.1007/s11692-012-9189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9189-0

Keywords

Navigation