Skip to main content
Log in

Using Parthenogenetic Lineages to Identify Advantages of Sex

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The overwhelming predominance of sexual reproduction in nature is surprising given that sex is expected to confer profound costs in terms of production of males and the breakup of beneficial allele combinations. Recognition of these theoretical costs was the inspiration for a large body of empirical research—typically focused on comparing sexual and asexual organisms, lineages, or genomes—dedicated to identifying the advantages and maintenance of sex in natural populations. Despite these efforts, why sex is so common remains unclear. Here, we argue that we can generate general insights into the advantages of sex by taking advantage of parthenogenetic taxa that differ in such characteristics as meiotic versus mitotic offspring production, ploidy level, and single versus multiple and hybrid versus non-hybrid origin. We begin by evaluating benefits that sex can confer via its effects on genetic linkage, diversity, and heterozygosity and outline how the three classes of benefits make different predictions for which type of parthenogenetic lineage would be favored over others. Next, we describe the type of parthenogenetic model system (if any) suitable for testing whether the hypothesized benefit might contribute to the maintenance of sex in natural populations, and suggest groups of organisms that fit the specifications. We conclude by discussing how empirical estimates of characteristics such as time since derivation and number of independent origins of asexual lineages from sexual ancestors, ploidy levels, and patterns of molecular evolution from representatives of these groups can be used to better understand which mechanisms maintain sex in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Archetti, M. (2010). Complementation, genetic conflict, and the evolution of sex and recombination. Journal of Heredity, 101, S21–S33.

    Article  PubMed  CAS  Google Scholar 

  • Barton, N. H., & Otto, S. P. (2005). Evolution of recombination due to random drift. Genetics, 169, 2353–2370.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G. (1982). The masterpiece of nature. London: Croon Helm.

    Google Scholar 

  • Beukeboom, L. W., Weinzierl, R. P. K., Reed, M., & Michiels, N. K. (1996). Distribution and origin of chromosomal races in the freshwater planarian Duglesia polychroa (Turbellaria: Tricladida). Hereditas, 125, 7–15.

    Google Scholar 

  • Bierzychudek, P. (1985). Patterns in plant parthenogenesis. Experientia, 41, 1255–1264.

    Article  Google Scholar 

  • Birky, C. W., & Walsh, J. B. (1988). Effects of linkage on rates of molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 85, 6414–6418.

    Article  PubMed  CAS  Google Scholar 

  • Black, F. L., & Hedrick, P. W. (1997). Strong balancing selection at HLA loci: Evidence from segregation in South Amerindian families. Proceedings of the National Academy of Sciences of the United States of America, 94, 12452–12456.

    Article  PubMed  CAS  Google Scholar 

  • Browne, R. A. (1992). Population genetics and ecology of Artemia: Insights into parthenogenetic reproduction. Trends in Ecology & Evolution, 7, 232–237.

    Article  CAS  Google Scholar 

  • Burt, A. (2000). Perspective: Sex, recombination, and the efficacy of selection—Was Weismann right? Evolution, 54, 337–351.

    PubMed  CAS  Google Scholar 

  • Carrington, M., Nelson, G. W., Martin, M. P., Kissner, T., Vlahov, D., et al. (1999). HLA and HIV-1: Heterozygote advantage and B*35-Cw*04 disadvantage. Science, 283, 1748–1752.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., Morgan, M. T., & Charlesworth, B. (1993). Mutation accumulation in finite outbreeding and inbreeding populations. Genetical Research, 61, 39–56.

    Article  Google Scholar 

  • Christensen, B. (1961). Studies on cyto-taxonomy and reproduction in Enchytraeidae- with notes on parthenogenesis and polyploidy in the animal kingdom. Hereditas, 47, 387.

    Article  Google Scholar 

  • Christensen, B., Hvilsom, M. M., & Pedersen, B. V. (1989). On the origin of clonal diversity in parthenogenetic Fridericia striata (Enchytraeidae, Oligochaeta). Hereditas, 110, 89–91.

    Article  Google Scholar 

  • Coltman, D. W., Pilkington, J. G., Smith, J. A., & Pemberton, J. M. (1999). Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution, 53, 1259–1267.

    Article  Google Scholar 

  • Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. New York: Harper and Row.

    Google Scholar 

  • D’Souza, T. G., Storhas, M., Schulenburg, H., Beukeboom, L. W., & Michiels, N. K. (2004). Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proceedings of the Royal Society of London B, 271, 1001–1007.

    Article  Google Scholar 

  • de Visser, J., & Elena, S. F. (2007). The evolution of sex: Empirical insights into the roles of epistasis and drift. Nature Reviews Genetics, 8, 139–149.

    Article  PubMed  Google Scholar 

  • Decaestecker, E., Gaba, S., Raeymaekers, J. A. M., Stoks, R., Van Kerckhoven, L., Ebert, D., et al. (2007). Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature, 450, 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1974). The evolutionary advantages of recombination. Genetics, 78, 737–756.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., & Yokoyama, S. (1976). The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics, 83, 845–859.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.

    Google Scholar 

  • Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., et al. (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology, 5, 914–921.

    Article  CAS  Google Scholar 

  • Green, R. F., & Noakes, D. L. G. (1995). Is a little of bit of sex as good as a lot? Journal of Theoretical Biology, 174, 87–96.

    Article  Google Scholar 

  • Haccou, P., & Schneider, M. V. (2004). Modes of reproduction and the accumulation of deleterious mutations with multiplicative fitness effects. Genetics, 166, 1093–1104.

    Article  PubMed  Google Scholar 

  • Hadany, L., & Comeron, J. M. (2008). Why are sex and recombination so common? Annals of the New York Academy of Sciences, 1133, 26–43.

    Article  PubMed  Google Scholar 

  • Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384–387.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, A., & Harrison, S. (1994). Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167–188.

    Article  Google Scholar 

  • Hedrick, P. W., & Thomsom, G. (1983). Evidence for balancing selection at HLA. Genetics, 104, 449–456.

    PubMed  CAS  Google Scholar 

  • Hill, W. G., & Robertson, A. (1966). Effect of linkage on limits to artificial selection. Genetical Research, 8, 269–294.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. G., & Howard, R. S. (2007). Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution, 61, 2728–2735.

    Article  PubMed  Google Scholar 

  • Jokela, J., Dybdahl, M. F., & Lively, C. M. (2009). The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. American Naturalist, 174, S43–S53.

  • Judson, O. P., & Normark, B. B. (1996). Ancient asexual scandals. Trends in Ecology & Evolution, 11, 41–46.

    Article  CAS  Google Scholar 

  • Keightley, P. D., & Otto, S. P. (2006). Interference among deleterious mutations favours sex and recombination in finite populations. Nature, 443, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S. (1993). Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84, 372–387.

    PubMed  CAS  Google Scholar 

  • Kramer, M. G., & Templeton, A. R. (2001). Life-history changes that accompany the transition from sexual to parthenogenetic reproduction in Drosophila mercatorum. Evolution, 55, 748–761.

    Article  PubMed  CAS  Google Scholar 

  • Lively, C. M. (2010). A review of Red Queen models for the persistence of obligate sexual reproduction. Journal of Heredity, 101, S13–S20.

    Article  PubMed  Google Scholar 

  • Lundmark, M. (2006). Polyploidization, hybridization and geographical parthenogenesis. Trends in Ecology & Evolution, 21, 9.

    Article  Google Scholar 

  • Lynch, M., Burger, R., Butcher, D., & Gabriel, W. (1993). The mutational meltdown in asexual populations. Journal of Heredity, 84, 339–344.

    PubMed  CAS  Google Scholar 

  • Maynard Smith, J. (1971). The origin and maintenance of sex. In G. C. Williams (Ed.), Group selection (pp. 164–175). Chicago: Aldine-Atherton.

    Google Scholar 

  • Maynard Smith, J. (1978). The evolution of sex. New York: Cambridge University Press.

    Google Scholar 

  • Morris, J. A., & Harrison, L. M. (2009). Hypothesis: Increased male mortality caused by infection is due to a decrease in heterozygous loci as a result of a single X chromosome. Medical Hypotheses, 72, 322–324.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation Research, 1, 2–9.

    Google Scholar 

  • Müller, H. J. (1932). Some genetic aspects of sex. American Naturalist, 66, 118–138.

    Article  Google Scholar 

  • Neiman, M., Hehman, G., Miller, J. T., Logsdon, J. M., & Taylor, D. R. (2010). Accelerated mutation accumulation in asexual lineages of a freshwater snail. Molecular Biology and Evolution, 27, 954–963.

    Article  PubMed  CAS  Google Scholar 

  • Neiman, M., & Koskella, B. (2009). Sex and the Red Queen. In I. Schön, K. Martens, & P. van Dijk (Eds.), Lost sex (pp. 133–159). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Neiman, M., Meirmans, S., & Meirmans, P. G. (2009). What can asexual lineage age tell us about the maintenance of sex? Annals of the New York Academy of Sciences, 1168, 185–200.

    Article  PubMed  Google Scholar 

  • Neiman, M., & Taylor, D. R. (2009). The causes of mutation accumulation in mitochondrial genomes. Proceedings of the Royal Society B, 276, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Normark, B. B., & Moran, N. A. (2000). Testing for the accumulation of deleterious mutations in asexual eukaryote genomes using molecular sequences. Journal of Natural History, 34, 1719–1729.

    Article  Google Scholar 

  • Ohta, T., & Kimura, M. (1971). On the constancy of the evolutionary rate of cistrons. Journal of Molecular Evolution, 1, 18–25.

    Article  CAS  Google Scholar 

  • Ortego, J., Aparicio, J. M., Calabuig, G., & Cordero, P. J. (2007). Risk of ectoparasitism and genetic diversity in a wild lesser kestrel population. Molecular Ecology, 16, 3712–3720.

    Article  PubMed  CAS  Google Scholar 

  • Otto, S. P. (2009). The evolutionary enigma of sex. American Naturalist, 174, S1–S14.

    Article  PubMed  Google Scholar 

  • Otto, S. P., & Barton, N. H. (1997). The evolution of recombination: removing the limits to natural selection. Evolution, 147, 879–906.

    CAS  Google Scholar 

  • Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.

    Article  PubMed  CAS  Google Scholar 

  • Paland, S., & Lynch, M. (2006). Transitions to asexuality result in excess amino acid substitutions. Science, 311, 990–992.

    Article  PubMed  CAS  Google Scholar 

  • Pamilo, F., Nei, M., & Li, W. H. (1987). Accumulation of mutations in sexual and asexual populations. Genetical Research, 49, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Paquin, C. E., & Adams, J. (1983). Frequency of fixation of adaptive mutations is higher in diploid than in haploid populations. Nature, 302, 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Pearcy, M., Hardy, O., & Aron, S. (2006). Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity, 96, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Pongratz, N., Storhas, M., Carranza, S., & Michiels, N. K. (2003). Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: Patterns and explanations. BMC Evolutionary Biology, 3, 23.

    Article  PubMed  Google Scholar 

  • Rice, W. R. (2002). Experimental tests of the adaptive significance of sexual recombination. Nature Reviews Genetics, 3, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A. J. (1997). Plant breeding systems. Cheltenham, UK: Stanley Thornes.

    Google Scholar 

  • Robertson, A. (1961). Inbreeding in artificial selection programmes. Genetical Research, 2, 189.

    Article  Google Scholar 

  • Roze, D., & Barton, N. H. (2006). The Hill-Robertson effect and the evolution of recombination. Genetics, 173, 1793–1811.

    Article  PubMed  CAS  Google Scholar 

  • Schwander, T., Vuilleumier, S., Dubman, J., & Crespi, B. J. (2010). Positive feedback in the transition from sexual reproduction to parthenogenesis. Proceedings of the Royal Society B, 277, 1435–1442.

    Article  PubMed  Google Scholar 

  • Spurgin, L. G., & Richardson, D. S. (2010). How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proceedings of the Royal Society of London B, 277, 979–988.

    Article  CAS  Google Scholar 

  • Stenberg, P., & Saura, A. (2009). Cytology of asexual animals. In I. Schön, K. Martens, & P. van Dijk (Eds.), Lost sex. The evolutionary biology of Parthenogenesis (pp. 63–74). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Suomalainen, E., Saura, A., & Lokki, J. (1987). Cytology and evolution in parthenogenesis. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Suomaleinen, E. (1950). Parthenogenesis in animals. Advances in Genetics, 3, 193–253.

    Article  Google Scholar 

  • Tagg, N., Innes, D. J., & Doncaster, C. P. (2005). Outcomes of reciprocal invasions between genetically diverse and genetically uniform populations of Daphnia obtusa (Kurz). Oecologia, 143, 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R. (1982). The prophecies of parthenogenesis. In H. Dingle & J. P. Hegmann (Eds.), Evolution and genetics of life histories (pp. 75–101). New York: Springer.

    Google Scholar 

  • Thursz, M. R., Thomas, H. C., Greenwood, B. M., & Hill, A. V. S. (1997). Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nature Genetics, 17, 11–12.

    Article  PubMed  CAS  Google Scholar 

  • Wade, M. J., & Goodnight, C. J. (1998). Perspective: The theories of Fisher and Wright in the context of metapopulations: When nature does many small experiments. Evolution, 52, 1537–1553.

    Article  Google Scholar 

  • Williams, G. C. (1971). Introduction. In G. C. Williams (Ed.), Group selection (pp. 1–15). Chicago: Aldine-Atherton.

    Google Scholar 

  • Williams, G. C. (1975). Sex and evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Williams, G. C., & Mitton, J. B. (1973). Why reproduce sexually? Journal of Theoretical Biology, 39, 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Woelfing, B., Traulsen, A., Milinksi, M., & Boehm, T. (2009). Does intra-individual major histocompatibility complex diversity keep a golden mean? Philosophical Transactions of the Royal Society of London Series B, 364, 117–128.

    Article  PubMed  Google Scholar 

  • Wolinska, J., & Lively, C. M. (2008). The cost of males in Daphnia pulex. Oikos, 117, 1637–1646.

    Article  Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Neiman acknowledges funding from the Carver Trust and the University of Iowa, and T. Schwander from the Netherlands Organisation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurine Neiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 41.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neiman, M., Schwander, T. Using Parthenogenetic Lineages to Identify Advantages of Sex. Evol Biol 38, 115–123 (2011). https://doi.org/10.1007/s11692-011-9113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9113-z

Keywords

Navigation