Skip to main content
Log in

Developmental Dynamics and G-Matrices: Can Morphometric Spaces be Used to Model Phenotypic Evolution?

  • Focal Review
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Modern morphometrics, especially geometric morphometrics, is a powerful tool for modeling the evolution and development of the phenotype. Complicated morphological transformations can be simulated by using standard evolutionary genetic equations for processes such as selection and drift in the same morphospaces that are used for empirical morphometric studies. Such applications appear to be consistent with the theory of quantitative evolution of the phenotype. Nevertheless, concerns exist whether simulations of phenotypic changes directly in morphospaces is realistic because trajectories traced in such spaces describe continuous gradations in the phenotype and because the gain and loss of structures is often impossible because morphospaces are necessarily constructed from variables shared in common by all the phenotypes being considered. Competing models of phenotypic change emphasize morphological discontinuity and novelty. Recently developed models of phenotypic evolution that introduce a “phenotypic landscape” between evolutionary genetic constructs like the adaptive landscape and morphospace may correct this shortcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberch, P. (1982). Developmental constraints in evolutionary processes. In J. T. Bonner (Ed.), Evolution and development (pp. 313–332). Heidelberg: Springer.

    Google Scholar 

  • Alberch, P. (1985). Problems with the interpretation of developmental sequences. Systematic Zoology, 34, 46–58. doi:10.2307/2413344.

    Google Scholar 

  • Albert, A. Y. K., Saway, S., Vines, T. H., Knecht, A. K., Miller, C. T., Summers, B. R., et al. (2008). The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size. Evolution, 62, 76–85.

    PubMed  Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112, 9–32. doi:10.1023/A:1013373907708.

    PubMed  Google Scholar 

  • Arthur, W. (2004). The effect of development on the direction of evolution: Toward a twenty-first century consensus. Evolution and Development, 6, 282–288. doi:10.1111/j.1525-142X.2004.04033.x.

    PubMed  Google Scholar 

  • Bateseon, W. (1894). Materials for the study of variation, treated with special regard to discontinuity in the origin of species. London: MacMillan and Co.

    Google Scholar 

  • Blows, M. W. (2007). A tale of two matrices: Multivariate approaches in evolutionary biology. Journal of Evolutionary Biology, 20, 1–8. doi:10.1111/j.1420-9101.2006.01164.x.

    PubMed  CAS  Google Scholar 

  • Blows, M. W., & Brooks, R. (2003). Measuring nonlinear selection. American Naturalist, 162, 815–820. doi:10.1086/378905.

    PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambrige University Press.

    Google Scholar 

  • Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis of the midsaggital plane in ontogeny and evolution. Journal of Human Evolution, 44, 167–187. doi:10.1016/S0047-2484(02)00201-4.

    PubMed  Google Scholar 

  • Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B., Elder, R. L., & Smith, G. R. (1982). A comment upon the uses of Fourier methods in systematics. Systematic Zoology, 31, 85–92. doi:10.2307/2413416.

    Google Scholar 

  • Cardini, A., & O’Higgins, P. (2005). Post-natal ontogeny of the mandible and ventral cranium in Marmota (Rodentia, Sciuridae): Allometry and phylogeny. Zoomorphology, 124, 189–203. doi:10.1007/s00435-005-0008-3.

    Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–968. doi:10.2307/2408911.

    Google Scholar 

  • Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Sanguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42. doi:10.1046/j.1420-9101.1996.9010005.x.

    Google Scholar 

  • Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461–469. doi:10.1590/S1415-47572007000300027.

    Google Scholar 

  • Cope, E. D. (1887). Origin of the fittest: Essays on evolution. New York: D. Appleton and Co.

    Google Scholar 

  • Corbin, C. E. (2008). Foraging ecomorphology within North American flycatchers and a test of concordance with southern African species. Journal of Ornithology, 49, 83–95. doi:10.1007/s10336-007-0221-6.

    Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings – Royal Society B, 275, 71–76. doi:10.1098/rspb.2007.1169.

    Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical analysis of shape. New York: Wiley.

    Google Scholar 

  • Erlich, R., Pharr, R. B., & Healy-Williams, N. (1983). Comments on the validity of Fourier descriptors in systematics: A reply to Bookstein et al. Systematic Zoology, 32, 202–206. doi:10.2307/2413281.

    Google Scholar 

  • Felsenstein, J. (1973). Maximum likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 126, 1–25. doi:10.1086/284325.

    Google Scholar 

  • Felsenstein, J. (1988). Phylogenies and quantitative characters. Annual Review of Ecology and Systematics, 19, 445–471. doi:10.1146/annurev.es.19.110188.002305.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.

    Google Scholar 

  • Gavrilets, S. (2004). Fitness landscapes and the origin of species. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gilchrist, M. A., & Nijhout, H. F. (2001). Nonlinear developmental processes as sources of dominance. Genetics, 159, 423–432.

    PubMed  CAS  Google Scholar 

  • Goodwin, B. C. (1994). How the leopard changed its spots. London: Weidenfeld and Nicholson.

    Google Scholar 

  • Goswami, A. (2006). Morphological integration in the carnivoran skull. Evolution, 60, 122–136.

    Google Scholar 

  • Gould, S. J. (1985). Ontogeny and phylogeny. Cambridge, MA: Harvard Belknap Press.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard Belknap Press.

    Google Scholar 

  • Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society B, 326, 119–157. doi:10.1098/rstb.1989.0106.

    CAS  Google Scholar 

  • Hammer, Ø., & Harper, D. A. T. (2005). Paleontological data analysis. London: Wiley-Blackwell.

    Google Scholar 

  • Hannisdal, B. (2007). Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology, 33, 98–115. doi:10.1666/06038.1.

    Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology Evolution and Systematics, 37, 123–157. doi:10.1146/annurev.ecolsys.37.091305.110224.

    Google Scholar 

  • Hohenlohe, P. A., & Arnold, S. J. (2008). MIPoD: A hypothesis-testing framework for microevolutionary inference from patterns of divergence. American Naturalist, 171, 366–385. doi:10.1086/527498.

    PubMed  Google Scholar 

  • Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences of the USA, 104, 18404–18408. doi:10.1073/pnas.0704088104.

    PubMed  CAS  Google Scholar 

  • Hunt, J., Wolf, J. B., & Moore, A. J. (2007). The biology of multivariate evolution. Journal of Evolutionary Biology, 20, 24–27. doi:10.1111/j.1420-9101.2006.01222.x.

    PubMed  CAS  Google Scholar 

  • Jernvall, J. (1995). Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zoologica Fennici, 198, 1–61.

    Google Scholar 

  • Jernvall, J. (2000). Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences of the USA, 97, 2641–2645. doi:10.1073/pnas.050586297.

    PubMed  CAS  Google Scholar 

  • Jernvall, J., & Thesleff, I. (2000). Reiterative signalling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29. doi:10.1016/S0925-4773(99)00322-6.

    PubMed  CAS  Google Scholar 

  • Johnson, N. A., & Porter, A. H. (2001). Toward a new synthesis: Population genetics and evolutionary developmental biology. Genetica, 112–113, 45–58. doi:10.1023/A:1013371201773.

    PubMed  Google Scholar 

  • Jones, A. G., Arnold, S. J., & Burger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution, 61, 727–745. doi:10.1111/j.1558-5646.2007.00071.x.

    PubMed  Google Scholar 

  • Kangas, A. T., Evans, A. R., Thesleff, I., & Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature, 432, 211–214. doi:10.1038/nature02927.

    PubMed  CAS  Google Scholar 

  • Kauffman, S. A. (1993). The origins of order: Self organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921. doi:10.1534/genetics.166.4.1909.

    PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and direction in multidimensional shape spaces: Implications for morphometric applications. Systematic Biology, 54, 678–688. doi:10.1080/10635150590947258.

    PubMed  Google Scholar 

  • Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.

    Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain-body size allometry. Evolution, 33, 402–416. doi:10.2307/2407630.

    Google Scholar 

  • Lele, S., & Richtsmeier, J. T. (1991). Euclidean distance matrix analysis: A coordinate system free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology, 86, 415–417. doi:10.1002/ajpa.1330860307.

    PubMed  CAS  Google Scholar 

  • Lele, S., & Richtsmeier, J. T. (1992). Statistical models in morphometrics: Are they realistic? Systematic Zoology, 39, 60–69. doi:10.2307/2992208.

    Google Scholar 

  • Lohmann, G. P. (1983). Eigenshape analysis of microfossils: A general morphometric method for describing changes in shape. Mathematical Geology, 15, 659–672. doi:10.1007/BF01033230.

    Google Scholar 

  • MacLeod, N. (1999). Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology, 25, 107–138.

    Google Scholar 

  • MacLeod, N. (2002). Systematic implications of a synthesis between theoretical morphology and geometric morphometrics. In L. Kandoff (Ed.), Computations in science (p. 7). Chicago, IL: Department of Physics, University of Chicago.

    Google Scholar 

  • MacLeod, N., & Rose, K. D. (1993). Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. American Journal of Science, 293-A, 300–355.

    Google Scholar 

  • Maddison, W. P. (1991). Squared-change parsimony reconstructions of ancestral states for continuous valued characters on a phylogenetic tree. Systematic Zoology, 40, 304–314. doi:10.2307/2992324.

    Google Scholar 

  • Marroig, G., Vivo, M., & Cheverud, J. M. (2004). Cranial evolution in sakis (Pithecia, Platyrrhini) II: Evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17, 144–155. doi:10.1046/j.1420-9101.2003.00653.x.

    PubMed  CAS  Google Scholar 

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646–667. 10.1086/286013.

    Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution: A persepctive from the mountain lake conference on development and evolution. The Quarterly Review of Biology, 60, 265–287. doi:10.1086/414425.

    Google Scholar 

  • McGhee, G. R. (1999). Theoretical morphology: The concept and its applications. New York: Columbia University Press.

    Google Scholar 

  • McGhee, G. R. (2001). Exploring the spectrum of existent, nonexistent and impossible biological form. Trends in Ecology and Evolution, 16, 172–173. doi:10.1016/S0169-5347(01)02103-6.

    Google Scholar 

  • McGhee, G. R. (2007). The geometry of evolution: Adaptive landscapes and theoretical morphospaces. Cambridge: Cambridge University Press.

    Google Scholar 

  • McGhee, G. R., & McKinney, F. K. (2002). A theoretical morphologic analysis of ecomorphologic variation in Archimedes helical colony form. Palaios, 17, 556–570. doi:10.1669/0883-1351(2002)017 ≤ 0556:ATMAOE ≥ 2.0.CO;2.

  • McPeek, M. P., Shen, L., Torrey, J. Z., & Farid, H. (2008). The tempo and mode of 3-dimensional morphological evolution in male reproductive structures. American Naturalist, 171, E158–E178. doi:10.1086/587076.

    PubMed  Google Scholar 

  • Mezey, J. G., & Houle, D. (2005). The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution, 59, 1027–1038.

    PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2007). The conceptual and stiatistical relationship between modularity and morphological integration. Systematic Biology, 56, 818–836. doi:10.1080/10635150701648029.

    PubMed  Google Scholar 

  • Morgan, T. H. (1916). A critique of the theory of evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Müller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256. doi:10.1146/annurev.es.22.110191.001305.

    Google Scholar 

  • Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology, 288, 304–317. doi:10.1002/1097-010X(20001215)288:4<304::AID-JEZ3>3.0.CO;2-G.

    PubMed  CAS  Google Scholar 

  • Nitecki, M. H. (1990). Evolutionary innovations. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Polly, P. D. (2004). On the simulation of the evolution of morphological shape: Multivariate shape under selection and drift. Palaeontologia Electronica, 7(2), 7A, 1–28. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm.

  • Polly, P. D. (2008). Adaptive zones and the pinniped ankle: A 3D quantitative analysis of carnivoran tarsal evolution. In E. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 165–194). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Raff, R. A. (1996). The shape of life. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Raup, D. M. (1966). Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40, 1178–1190.

    Google Scholar 

  • Reyment, R. A. (1984). Multivariate morphometrics. London: Academic Press.

    Google Scholar 

  • Rice, S. H. (1990). A geometric model for the evolution of development. Journal of Theoretical Biology, 177, 237–245. doi:10.1006/jtbi.1995.0241.

    Google Scholar 

  • Rice, S. H. (2000). The evolution of developmental interactions: Epistasis, canalization, and integration. In J. B. Wolf, E. D. Brodie, & M. J. Wade (Eds.), Epistasis and the evolutionary process (pp. 82–98). Oxford: Oxford University Press.

    Google Scholar 

  • Rice, S. H. (2002). A general population genetic theory for the evolution of developmental interactions. Proceedings of the National Academy of Sciences of the USA, 99, 15518–15523. doi:10.1073/pnas.202620999.

    PubMed  CAS  Google Scholar 

  • Rice, S. H. (2004a). Developmental associations between traits: Covariance and beyond. Genetics, 166, 513–526. doi:10.1534/genetics.166.1.513.

    PubMed  Google Scholar 

  • Rice, S. H. (2004b). Evolutionary theory: Mathematical and conceptual foundations. Sunderland, MA: Sinauer and Associates.

    Google Scholar 

  • Richtsmeier, J. T., Aldridge, K., DeLeon, V. B., Panchal, J., Kane, A. A., Marsh, J. L., et al. (2006). Phenotypic integration of neurocranium and brain. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 306B, 360–378. doi:10.1002/jez.b.21092.

    Google Scholar 

  • Richtsmeier, J. T., DeLeon, V. M., & Lele, S. R. (2002). The promise of geometric morphometrics. Yearbook of Physical Anthropology, 45, 63–91. doi:10.1002/ajpa.10174.

    Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. Chichester, England: Wiley-Interscience.

    Google Scholar 

  • Roff, D. A. (1997). Evolutionary quantitative genetics. New York: Springer.

    Google Scholar 

  • Rohlf, F. J. (2000). On the use of shape spaces to compare morphometric methods. Hystrix, 11, 1–17.

    Google Scholar 

  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55, 2143–2160.

    PubMed  CAS  Google Scholar 

  • Roopnarine, P. D., Murphy, M. A., & Buening, N. (2005). Microevolutionary dynamics of the early Devonian conodont Wurmiella from the Great Basin of Nevada. Palaeontologia Electronica, 8(2), 31A.

    Google Scholar 

  • Salazar-Ciudad, I. (2006). On the origins of moprhological disparity and its diverse developmental bases. BioEssays, 28, 1112–1122. doi:10.1002/bies.20482.

    PubMed  Google Scholar 

  • Salazar-Ciudad, I. (2007). On the origins of morphological variation, canalization, robustness, and evolvability. Integrative and Comparative Biology, 47, 390–400. doi:10.1093/icb/icm075.

    Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences of the USA, 99, 8116–8120. doi:10.1073/pnas.132069499.

    PubMed  CAS  Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2004). How different types of pattern formation mechanisms affect the evolution of form and development. Evolution and Development, 6, 6–16. doi:10.1111/j.1525-142X.2004.04002.x.

    PubMed  Google Scholar 

  • Salazar-Ciudad, I., Newman, S. A., & Solé, R. V. (2001). Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evolution and Development, 3, 84–94. doi:10.1046/j.1525-142x.2001.003002084.x.

    PubMed  CAS  Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Steppan, S. J. (2004). Phylogenetic comparative analysis of multivariate data. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 325–344). Oxford: Oxford University Press.

    Google Scholar 

  • Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetids: Evolution of the G matrix. Trends in Ecology and Evolution, 17, 320–327. doi:10.1016/S0169-5347(02)02505-3.

    Google Scholar 

  • Strauss, R. E., & Bookstein, F. L. (1982). The truss: Body form reconstructions in morphometrics. Systematic Zoology, 31, 113–135. doi:10.2307/2413032.

    Google Scholar 

  • Szuma, E. (2002). Dental polymorphism in a population of the red fox (Vulpes vulpes) from Poland. Journal of Zoology (London), 256, 243–253.

    Google Scholar 

  • Szuma, E. (2007). Geography of dental polymorphism in the red fox Vulpes vulpes and its evolutionary implications. Biological Journal of the Linnean Society, 90, 61–84. doi:10.1111/j.1095-8312.2007.00712.x.

    Google Scholar 

  • Thesleff, I., & Sharpe, P. (1997). Signalling networks regulating dental development. Mechanisms of Development, 67, 111–123. doi:10.1016/S0925-4773(97)00115-9.

    PubMed  CAS  Google Scholar 

  • Vavilov, N. I. (1922). The law of homologous series in variation. Journal of Genetics, 12, 47–89.

    Article  Google Scholar 

  • Wiley, D., Amenta, N., Alcantara, D., Ghosh, D., Kil, Y. J., Delson, E., et al. (2005). Evolutionary morphing. Proceedings of the IEEE Visualization, 2005, 431–438.

    Google Scholar 

  • Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution, 45, 441–444. doi:10.2307/2409678.

    Google Scholar 

  • Wolf, J. B., Allen, C. E., & Frankino, W. A. (2004). Multivariate phenotypic evolution in developmental hyperspace. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 366–389). Oxford: Oxford University Press.

    Google Scholar 

  • Wolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D. III, & Moore, A. J. (2001). Developmental interactions and the constitutents of quantitative variation. Evolution, 55, 232–245.

    PubMed  CAS  Google Scholar 

  • Wolsan, M. (1989). Dental polymorphism in the Genus Martes (Carnivora: Mustelidae) and its evolutionary significance. Acta Therapeutica, 34, 545–593.

    Google Scholar 

  • Wood, A. R., Zelditch, M. L., Rountrey, A. N., Eiting, T. P., Sheets, H. D., & Gingerich, P. D. (2007). Multivariate stasis in the dental morphology of the Paleocene–Eocene condylarth Ectocion. Paleobiology, 33, 248–260. doi:10.1666/06048.1.

    Google Scholar 

  • Wright, S. (1968). Evolution and the genetics of populations: Genetic and biometric foundations. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Younker, J. L., & Erlich, R. (1977). Fourier biometrics—Harmonic amplitudes as multivariate shape descriptors. Systematic Zoology, 26, 336–342. doi:10.2307/2412679.

    Google Scholar 

  • Zelditch, M. L., Fink, W. L., & Swiderski, D. L. (1995). Morphometrics, homology, and phylogenetics: Quantified characters as synapomorphies. Systematic Biology, 44, 179–189. doi:10.2307/2413705.

    Google Scholar 

  • Zelditch, M. L., Mezey, J., Sheets, H. D., Lundrigan, B. L., & Garland, T. (2006). Developmental regulation of skull morphology II: Ontogenetic dynamics of covariance. Evolution and Development, 8, 46–60. doi:10.1111/j.1525-142X.2006.05074.x.

    PubMed  Google Scholar 

  • Zelditch, M. L., Swiderski, D., Sheets, D. H., & Fink, W. (2004). Geometric morphometrics for biologists. London: Academic Press.

    Google Scholar 

Download references

Acknowledgments

Benedikt Hallgrimsson invited this contribution and remained optimistically patient until it was finally delivered. Anjali Goswami, Jukka Jernvall, Jason Head, Michelle Lawing, Steve Le Comber, Sana Sarwar, and two anonymous reviewers commented helpfully on the text and figures. Komal Khan scanned the teeth used in the figures. Thank you all. The author alone is responsible for any shortcomings in the ideas presented here or their execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. David Polly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polly, P.D. Developmental Dynamics and G-Matrices: Can Morphometric Spaces be Used to Model Phenotypic Evolution?. Evol Biol 35, 83–96 (2008). https://doi.org/10.1007/s11692-008-9020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9020-0

Keywords

Navigation