Skip to main content

Advertisement

Log in

Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits

  • Military\\/Veteran TBI
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) remains one of the most prevalent forms of morbidity among Veterans and Service Members, particularly for those engaged in the conflicts in Iraq and Afghanistan. Neuroimaging has been considered a potentially useful diagnostic and prognostic tool across the spectrum of TBI generally, but may have particular importance in military populations where the diagnosis of mild TBI is particularly challenging, given the frequent lack of documentation on the nature of the injuries and mixed etiologies, and highly comorbid with other disorders such as post-traumatic stress disorder, depression, and substance misuse. Imaging has also been employed in attempts to understand better the potential late effects of trauma and to evaluate the effects of promising therapeutic interventions. This review surveys the use of structural and functional neuroimaging techniques utilized in military studies published to date, including the utilization of quantitative fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), volumetric analysis, diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), positron emission tomography (PET), magnetoencephalography (MEG), task-based and resting state functional MRI (fMRI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). The importance of quality assurance testing in current and future research is also highlighted. Current challenges and limitations of each technique are outlined, and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2. doi:10.3389/fnsys.2011.00002.

    PubMed Central  PubMed  Google Scholar 

  • Alsop, D. C., Detre, J. A., Golay, X., Gunther, M., Hendrikse, J., Hernandez-Garcia, L., et al. (2014). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine. doi:10.1002/mrm.25197.

    PubMed Central  Google Scholar 

  • Amann, M., Sprenger, T., Naegelin, Y., Reinhardt, J., Kuster, P., Hirsch, J. G., et al. (2015). Comparison between balanced steady-state free precession and standard spoiled gradient echo magnetization transfer ratio imaging in multiple sclerosis: methodical and clinical considerations. NeuroImage, 108, 87–94. doi:10.1016/j.neuroimage.2014.12.045.

    Article  PubMed  Google Scholar 

  • Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. [Meta-Analysis]. Journal of Neurology, Neurosurgery, and Psychiatry, 83(9), 870–876. doi:10.1136/jnnp-2012-302742.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 6(2), 115–116. doi:10.1038/nn1003.

    Article  CAS  PubMed  Google Scholar 

  • Ashwal, S., Holshouser, B., Tong, K., Serna, T., Osterdock, R., Gross, M., et al. (2004). Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatric Research, 56(4), 630–638. doi:10.1203/01.PDR.0000139928.60530.7D.

    Article  CAS  PubMed  Google Scholar 

  • Ashwal, S., Babikian, T., Gardner-Nichols, J., Freier, M. C., Tong, K. A., & Holshouser, B. A. (2006). Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. [Review]. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl 2), S50–S58. doi:10.1016/j.apmr.2006.07.275.

    Article  PubMed  Google Scholar 

  • Bagley, L. J., McGowan, J. C., Grossman, R. I., Sinson, G., Kotapka, M., Lexa, F. J., et al. (2000). Magnetization transfer imaging of traumatic brain injury. [Research Support, U.S. Gov’t, P.H.S.]. Journal of Magnetic Resonance Imaging, 11(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Barker, J. W., Han, P. K., Choi, S. H., Bae, K. T., & Park, S. H. (2015). Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain. PloS One, 10(2), e0117101. doi:10.1371/journal.pone.0117101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, R. A., Ling, G., Tong, L., Januszkiewicz, A., Agoston, D., Delanerolle, N., et al. (2009). An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. Journal of Neurotrauma, 26(6), 841–860. doi:10.1089/neu.2009-0898.

    Article  PubMed  Google Scholar 

  • Bazarian, J. J., Donnelly, K., Peterson, D. R., Warner, G. C., Zhu, T., & Zhong, J. (2013). The relation between posttraumatic stress disorder and mild traumatic brain injury acquired during Operations Enduring Freedom and Iraqi Freedom. [Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 28(1), 1–12. doi:10.1097/HTR.0b013e318256d3d3.

    Article  PubMed  Google Scholar 

  • Beauchamp, M. H., Beare, R., Ditchfield, M., Coleman, L., Babl, F. E., Kean, M., et al. (2013). Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Cortex, 49(2), 591–598. doi:10.1016/j.cortex.2012.08.015.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. [Comparative Study Research Support, Non-U.S. Gov’t]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi:10.1098/rstb.2005.1634.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 42(2), 503–514. doi:10.1016/j.neuroimage.2008.04.254.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bigler, E. D. (2001). Distinguished Neuropsychologist Award Lecture 1999. The lesion(s) in traumatic brain injury: implications for clinical neuropsychology. Archives of Clinical Neuropsychology, 16(2), 95–131.

    Article  CAS  PubMed  Google Scholar 

  • Bigler, E. D., Anderson, C. V., & Blatter, D. D. (2002). Temporal lobe morphology in normal aging and traumatic brain injury. [Research Support, Non-U.S. Gov’t]. AJNR. American Journal of Neuroradiology, 23(2), 255–266.

    PubMed  Google Scholar 

  • Bigler, E. D., Abildskov, T. J., Petrie, J., Farrer, T. J., Dennis, M., Simic, N., et al. (2013). Heterogeneity of brain lesions in pediatric traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuropsychology, 27(4), 438–451. doi:10.1037/a0032837.

    Article  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. [Research Support, U.S. Gov’t, P.H.S.]. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bouix, S., Pasternak, O., Rathi, Y., Pelavin, P. E., Zafonte, R., & Shenton, M. E. (2013). Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. PloS One, 8(6), e66205. doi:10.1371/journal.pone.0066205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown, S., Freeman, T., Kimbrell, T., Cardwell, D., & Komoroski, R. (2003). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of former prisoners of war with and without posttraumatic stress disorder. [Comparative Study]. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(3), 367–370.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Annals of the New York Academy of Sciences, 1124, 1–38. doi:10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  • Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., & Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Brain, 134(Pt 8), 2248–2260. doi:10.1093/brain/awr161.

    Article  PubMed Central  PubMed  Google Scholar 

  • Budde, M. D., Shah, A., McCrea, M., Cullinan, W. E., Pintar, F. A., & Stemper, B. D. (2013). Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Frontiers in Neurology, 4, 154. doi:10.3389/fneur.2013.00154.

    Article  PubMed Central  PubMed  Google Scholar 

  • Byrnes, K. R., Wilson, C. M., Brabazon, F., von Leden, R., Jurgens, J. S., Oakes, T. R., et al. (2014). FDG-PET imaging in mild traumatic brain injury: a critical review. [Review]. Frontiers in Neuroenergetics, 5, 13. doi:10.3389/fnene.2013.00013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Calabrese, E., Du, F., Garman, R. H., Johnson, G. A., Riccio, C., Tong, L. C., et al. (2014). Diffusion tensor imaging reveals white matter injury in a rat model of repetitive blast-induced traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 31(10), 938–950. doi:10.1089/neu.2013.3144.

    Article  PubMed Central  PubMed  Google Scholar 

  • Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., et al. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurobiology of Aging, 35(8), 1862–1872. doi:10.1016/j.neurobiolaging.2014.02.008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Castellanos, N. P., Leyva, I., Buldu, J. M., Bajo, R., Paul, N., Cuesta, P., et al. (2011). Principles of recovery from traumatic brain injury: reorganization of functional networks. [Research Support, Non-U.S. Gov’t]. NeuroImage, 55(3), 1189–1199. doi:10.1016/j.neuroimage.2010.12.046.

    Article  PubMed  Google Scholar 

  • Cecil, K. M., Hills, E. C., Sandel, M. E., Smith, D. H., McIntosh, T. K., Mannon, L. J., et al. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurosurgery, 88(5), 795–801. doi:10.3171/jns.1998.88.5.0795.

    Article  CAS  PubMed  Google Scholar 

  • Cernak, I., & Noble-Haeusslein, L. J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of Cerebral Blood Flow and Metabolism, 30(2), 255–266. doi:10.1038/jcbfm.2009.203.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chamard, E., Theoret, H., Skopelja, E. N., Forwell, L. A., Johnson, A. M., & Echlin, P. S. (2012). A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Part 4 of 4. [Research Support, Non-U.S. Gov’t]. Neurosurgical Focus, 33(6), E4. doi:10.3171/2012.10.FOCUS12305. 1–7.

    Article  PubMed  Google Scholar 

  • Chamard, E., Lassonde, M., Henry, L., Tremblay, J., Boulanger, Y., De Beaumont, L., et al. (2013). Neurometabolic and microstructural alterations following a sports-related concussion in female athletes. Brain Injury, 27(9), 1038–1046. doi:10.3109/02699052.2013.794968.

    Article  PubMed  Google Scholar 

  • Choe, A. S., Belegu, V., Yoshida, S., Joel, S., Sadowsky, C. L., Smith, S. A., et al. (2013). Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Frontiers in Human Neuroscience, 7, 290. doi:10.3389/fnhum.2013.00290.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen, B. A., Inglese, M., Rusinek, H., Babb, J. S., Grossman, R. I., & Gonen, O. (2007). Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. [Controlled Clinical Trial Research Support, N.I.H., Extramural]. AJNR. American Journal of Neuroradiology, 28(5), 907–913.

    CAS  PubMed  Google Scholar 

  • Corbo, V., Salat, D. H., Amick, M. M., Leritz, E. C., Milberg, W. P., & McGlinchey, R. E. (2014). Reduced cortical thickness in veterans exposed to early life trauma. [Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 223(2), 53–60. doi:10.1016/j.pscychresns.2014.04.013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Coughlin, J. M., Wang, Y., Munro, C. A., Ma, S., Yue, C., Chen, S., et al. (2015). Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurobiology of Disease, 74, 58–65. doi:10.1016/j.nbd.2014.10.019.

    Article  PubMed  Google Scholar 

  • Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Acta Neuropathologica, 128(6), 755–766. doi:10.1007/s00401-014-1349-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa, L., Robertson, A., Bethune, A., MacDonald, M. J., Shek, P. N., Taylor, M. J., et al. (2014). Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry. doi:10.1136/jnnp-2014-308571.

    PubMed Central  Google Scholar 

  • Davenport, N. D., Lim, K. O., Armstrong, M. T., & Sponheim, S. R. (2012). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 59(3), 2017–2024. doi:10.1016/j.neuroimage.2011.10.050.

    Article  PubMed  Google Scholar 

  • Davenport, N. D., Lim, K. O., & Sponheim, S. R. (2015). White matter abnormalities associated with military PTSD in the context of blast TBI. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 36(3), 1053–1064. doi:10.1002/hbm.22685.

    Article  PubMed  Google Scholar 

  • Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J. F., & Poupon, C. (2011). Multiple q-shell diffusion propagator imaging. [Research Support, Non-U.S. Gov’t]. Medical Image Analysis, 15(4), 603–621. doi:10.1016/j.media.2010.07.001.

    Article  PubMed  Google Scholar 

  • Detre, J. A., Leigh, J. S., Williams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Magnetic Resonance in Medicine, 23(1), 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Ding, K., Marquez de la Plata, C., Wang, J. Y., Mumphrey, M., Moore, C., Harper, C., et al. (2008). Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 25(12), 1433–1440. doi:10.1089/neu.2008.0683.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dortch, R. D., Moore, J., Li, K., Jankiewicz, M., Gochberg, D. F., Hirtle, J. A., et al. (2013). Quantitative magnetization transfer imaging of human brain at 7 T. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 64, 640–649. doi:10.1016/j.neuroimage.2012.08.047.

    Article  PubMed Central  PubMed  Google Scholar 

  • Doshi, H., Wiseman, N., Liu, J., Wang, W., Welch, R. D., O’Neil, B. J., et al. (2015). Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PloS One, 10(2), e0118061. doi:10.1371/journal.pone.0118061.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ennis, D. B., & Kindlmann, G. (2006). Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. [Research Support, N.I.H., Extramural]. Magnetic Resonance in Medicine, 55(1), 136–146. doi:10.1002/mrm.20741.

    Article  PubMed  Google Scholar 

  • Farbota, K. D., Sodhi, A., Bendlin, B. B., McLaren, D. G., Xu, G., Rowley, H. A., et al. (2012). Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. [Research Support, N.I.H., Extramural]. Journal of the International Neuropsychological Society, 18(6), 1006–1018. doi:10.1017/S1355617712000835.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer, B. L., Parsons, M., Durgerian, S., Reece, C., Mourany, L., Lowe, M. J., et al. (2014). Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. [Comparative Study Randomized Controlled Trial]. Journal of Neurotrauma, 31(2), 169–179. doi:10.1089/neu.2013.2877.

    Article  PubMed Central  PubMed  Google Scholar 

  • Folkersma, H., Boellaard, R., Vandertop, W. P., Kloet, R. W., Lubberink, M., Lammertsma, A. A., et al. (2009). Reference tissue models and blood–brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Nuclear Medicine, 50(12), 1975–1979. doi:10.2967/jnumed.109.067512.

    Article  PubMed  Google Scholar 

  • Folkersma, H., Boellaard, R., Yaqub, M., Kloet, R. W., Windhorst, A. D., Lammertsma, A. A., et al. (2011). Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Nuclear Medicine, 52(8), 1235–1239. doi:10.2967/jnumed.110.084061.

    Article  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi:10.1073/pnas.0504136102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin, T. R., Shin, J., Jagannathan, K., Suh, J. J., Detre, J. A., O’Brien, C. P., et al. (2012). Acute baclofen diminishes resting baseline blood flow to limbic structures: a perfusion fMRI study. [Research Support, N.I.H., Extramural]. Drug and Alcohol Dependence, 125(1–2), 60–66. doi:10.1016/j.drugalcdep.2012.03.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman, T. W., Cardwell, D., Karson, C. N., & Komoroski, R. A. (1998). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combat-related posttraumatic stress disorder. [Clinical Trial Controlled Clinical Trial]. Magnetic Resonance in Medicine, 40(1), 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, L., & Glover, G. H. (2006). Report on a multicenter fMRI quality assurance protocol. [Research Support, N.I.H., Extramural Review]. Journal of Magnetic Resonance Imaging, 23(6), 827–839. doi:10.1002/jmri.20583.

    Article  PubMed  Google Scholar 

  • Gandy, S. E., Snow, R. B., Zimmerman, R. D., & Deck, M. D. (1984). Cranial nuclear magnetic resonance imaging in head trauma. [Case Reports]. Annals of Neurology, 16(2), 254–257. doi:10.1002/ana.410160217.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Panach, J., Lull, N., Lull, J. J., Ferri, J., Martinez, C., Sopena, P., et al. (2011). A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. Journal of Neurotrauma, 28(9), 1707–1717. doi:10.1089/neu.2011.1851.

    Article  PubMed  Google Scholar 

  • Gardner, A., Iverson, G. L., & Stanwell, P. (2014). A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion. [Review]. Journal of Neurotrauma, 31(1), 1–18. doi:10.1089/neu.2013.3079.

    Article  PubMed  Google Scholar 

  • Garnett, M. R., Blamire, A. M., Corkill, R. G., Cadoux-Hudson, T. A., Rajagopalan, B., & Styles, P. (2000). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. [Clinical Trial Research Support, Non-U.S. Gov’t]. Brain, 123(Pt 10), 2046–2054.

    Article  PubMed  Google Scholar 

  • Gasparovic, C., Yeo, R., Mannell, M., Ling, J., Elgie, R., Phillips, J., et al. (2009). Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. Journal of Neurotrauma, 26(10), 1635–1643. doi:10.1089/neu.2009-0896.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gholipour, A., Kehtarnavaz, N., Scherrer, B., & Warfield, S. K. (2011). On the accuracy of unwarping techniques for the correction of susceptibility-induced geometric distortion in magnetic resonance Echo-planar images. [Research Support, N.I.H., Extramural]. Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 6997–7000. doi:10.1109/IEMBS.2011.6091769.

    Google Scholar 

  • Guskiewicz, K. M., & Valovich McLeod, T. C. (2011). Pediatric sports-related concussion. [Review]. PM & R, 3(4), 353–364. doi:10.1016/j.pmrj.2010.12.006. quiz 364.

    Article  Google Scholar 

  • Haacke, E. M., Raza, W., Wu, B., & Kou, Z. (2013). The presence of venous damage and microbleeds in traumatic brain injury and the potential future role of angiographic and perfusion magnetic resonance imaging. In C. W. Kreipke & J. A. Rafols (Eds.), Cerebral blood flow, metabolism, and head trauma (pp. 75–94). New York: Springer.

    Chapter  Google Scholar 

  • Han, K., Mac Donald, C. L., Johnson, A. M., Barnes, Y., Wierzechowski, L., Zonies, D., et al. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive ‘mild’ blast-related traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 84, 76–96. doi:10.1016/j.neuroimage.2013.08.017.

    Article  PubMed  Google Scholar 

  • Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: a comparison of faces and scenes. [Clinical Trial Comparative Study Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 17(1), 317–323.

    Article  PubMed  Google Scholar 

  • Harrison, N. A., Cooper, E., Dowell, N. G., Keramida, G., Voon, V., Critchley, H. D., et al. (2014). Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biological Psychiatry. doi:10.1016/j.biopsych.2014.09.023.

    Google Scholar 

  • Hartkamp, N. S., van Osch, M. J., Kappelle, J., & Bokkers, R. P. (2014). Arterial spin labeling magnetic resonance perfusion imaging in cerebral ischemia. [Research Support, Non-U.S. Gov’t Review]. Current Opinion in Neurology, 27(1), 42–53. doi:10.1097/WCO.0000000000000051.

    Article  PubMed  Google Scholar 

  • Haseler, L. J., Arcinue, E., Danielsen, E. R., Bluml, S., & Ross, B. D. (1997). Evidence from proton magnetic resonance spectroscopy for a metabolic cascade of neuronal damage in shaken baby syndrome. [Research Support, Non-U.S. Gov’t]. Pediatrics, 99(1), 4–14.

    Article  CAS  PubMed  Google Scholar 

  • Helmick, K. M., Spells, C. A., Malik, S. Z., Davies, C. A., Marion, D. W., Hinds, S. R. (2015). Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav. doi:10.1007/s11682-015-9399-z.

  • Henry, L. C., Tremblay, S., Leclerc, S., Khiat, A., Boulanger, Y., Ellemberg, D., et al. (2011). Metabolic changes in concussed American football players during the acute and chronic post-injury phases. [Research Support, Non-U.S. Gov’t]. BMC Neurology, 11, 105. doi:10.1186/1471-2377-11-105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hetherington, H. P., Hamid, H., Kulas, J., Ling, G., Bandak, F., de Lanerolle, N. C., et al. (2014). MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 71(4), 1358–1367. doi:10.1002/mrm.24814.

    Article  PubMed Central  PubMed  Google Scholar 

  • Holshouser, B. A., Tong, K. A., & Ashwal, S. (2005). Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR. American Journal of Neuroradiology, 26(5), 1276–1285.

    PubMed  Google Scholar 

  • Hong, Y. T., Veenith, T., Dewar, D., Outtrim, J. G., Mani, V., Williams, C., et al. (2014). Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. JAMA Neurology, 71(1), 23–31. doi:10.1001/jamaneurol.2013.4847.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang, H., Ceritoglu, C., Li, X., Qiu, A., Miller, M. I., van Zijl, P. C., et al. (2008). Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. [Research Support, N.I.H., Extramural]. Magnetic Resonance Imaging, 26(9), 1294–1302. doi:10.1016/j.mri.2008.03.005.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 61(4), 1067–1082. doi:10.1016/j.neuroimage.2012.04.029.

    Article  PubMed  Google Scholar 

  • Huang, M. X., Nichols, S., Baker, D. G., Robb, A., Angeles, A., Yurgil, K. A., et al. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. NeuroImage: Clinical, 5, 109–119. doi:10.1016/j.nicl.2014.06.004.

    Article  Google Scholar 

  • Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of Neurotrauma, 29(4), 654–671. doi:10.1089/neu.2011.1906.

    Article  PubMed Central  PubMed  Google Scholar 

  • Isaac, L., Main, K. L., Soman, S., Gotlib, I. H., Furst, A. J., Kinoshita, L. M., et al. (2015). The impact of depression on Veterans with PTSD and traumatic brain injury: a diffusion tensor imaging study. Biological Psychology, 105, 20–28. doi:10.1016/j.biopsycho.2014.12.011.

    Article  PubMed  Google Scholar 

  • Ito, R., Mori, S., & Melhem, E. R. (2002). Diffusion tensor brain imaging and tractography. Neuroimaging Clinics of North America, 12(1), 1–19.

    Article  PubMed  Google Scholar 

  • Johnson, B., Gay, M., Zhang, K., Neuberger, T., Horovitz, S. G., Hallett, M., et al. (2012). The use of magnetic resonance spectroscopy in the subacute evaluation of athletes recovering from single and multiple mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 29(13), 2297–2304. doi:10.1089/neu.2011.2294.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jorge, R. E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., et al. (2012). White matter abnormalities in veterans with mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The American Journal of Psychiatry, 169(12), 1284–1291. doi:10.1176/appi.ajp.2012.12050600.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawai, N., Kawanishi, M., Kudomi, N., Maeda, Y., Yamamoto, Y., Nishiyama, Y., et al. (2013). Detection of brain amyloid beta deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh Compound-B. [Research Support, Non-U.S. Gov’t]. Brain Injury, 27(9), 1026–1031. doi:10.3109/02699052.2013.794963.

    Article  PubMed  Google Scholar 

  • Kim, J., Whyte, J., Patel, S., Europa, E., Slattery, J., Coslett, H. B., et al. (2012a). A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural]. Neurorehabilitation and Neural Repair, 26(7), 870–880. doi:10.1177/1545968311434553.

    Article  PubMed  Google Scholar 

  • Kim, J., Whyte, J., Patel, S., Europa, E., Wang, J., Coslett, H. B., et al. (2012b). Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. [Randomized Controlled Trial Research Support, N.I.H., Extramural]. Psychopharmacology, 222(1), 47–57. doi:10.1007/s00213-011-2622-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, N., Branch, C. A., Kim, M., & Lipton, M. L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. PloS One, 8(3), e59382. doi:10.1371/journal.pone.0059382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimbrell, T., Leulf, C., Cardwell, D., Komoroski, R. A., & Freeman, T. W. (2005). Relationship of in vivo medial temporal lobe magnetic resonance spectroscopy to documented combat exposure in veterans with chronic posttraumatic stress disorder. Psychiatry Research, 140(1), 91–94. doi:10.1016/j.pscychresns.2005.07.001.

    Article  PubMed  Google Scholar 

  • Kirov, I., Fleysher, L., Babb, J. S., Silver, J. M., Grossman, R. I., & Gonen, O. (2007). Characterizing ‘mild’ in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. [Research Support, N.I.H., Extramural]. Brain Injury, 21(11), 1147–1154. doi:10.1080/02699050701630383.

    Article  PubMed  Google Scholar 

  • Kirov, I. I., Tal, A., Babb, J. S., Lui, Y. W., Grossman, R. I., & Gonen, O. (2013a). Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Neurology, 260(1), 242–252. doi:10.1007/s00415-012-6626-z.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirov, I. I., Tal, A., Babb, J. S., Reaume, J., Bushnik, T., Ashman, T. A., et al. (2013b). Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 30(13), 1200–1204. doi:10.1089/neu.2012.2696.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koerte, I. K., Lin, A. P., Muehlmann, M., Merugumala, S., Liao, H., Starr, T., et al. (2015a). Altered neurochemistry in former professional soccer players without a history of concussion. Journal of Neurotrauma. doi:10.1089/neu.2014.3715.

    Google Scholar 

  • Koerte, I. K., Lin, A. P., Willems, A., Muehlmann, M., Hufschmidt, J., Coleman, M. J., et al. (2015b). A review of neuroimaging findings in repetitive brain trauma. Brain Pathology, 25(3), 318–349. doi:10.1111/bpa.12249.

    Article  PubMed  Google Scholar 

  • LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Human Brain Mapping, 28(10), 1033–1044. doi:10.1002/hbm.20326.

    Article  PubMed  Google Scholar 

  • Levin, H. S., Wilde, E., Troyanskaya, M., Petersen, N. J., Scheibel, R., Newsome, M., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 27(4), 683–694. doi:10.1089/neu.2009.1073.

    Article  PubMed  Google Scholar 

  • Lewine, J. D., Davis, J. T., Sloan, J. H., Kodituwakku, P. W., & Orrison, W. W., Jr. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. [Comparative Study]. AJNR. American Journal of Neuroradiology, 20(5), 857–866.

    CAS  PubMed  Google Scholar 

  • Lewine, J. D., Davis, J. T., Bigler, E. D., Thoma, R., Hill, D., Funke, M., et al. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 22(3), 141–155. doi:10.1097/01.HTR.0000271115.29954.27.

    Article  PubMed  Google Scholar 

  • Lin, A., Ramadan, S., Box, H., Stanwell, P., & Stern, R. A. (2010). Neurochemical Changes in Athletes with Chronic Traumatic Encephalopathy. Paper presented at the 96th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL.

  • Lin, A., Tran, T., Bluml, S., Merugumala, S., Liao, H. J., & Ross, B. D. (2012a). Guidelines for acquiring and reporting clinical neurospectroscopy. [Review]. Seminars in Neurology, 32(4), 432–453. doi:10.1055/s-0032-1331814.

    PubMed  Google Scholar 

  • Lin, A. P., Liao, H. J., Merugumala, S. K., Prabhu, S. P., Meehan, W. P., 3rd, & Ross, B. D. (2012b). Metabolic imaging of mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Brain Imaging and Behavior, 6(2), 208–223. doi:10.1007/s11682-012-9181-4.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., Daducci, A., Meskaldji, D. E., Thiran, J., Michel, P., Meuli, R., et al. (2014). Quantitative analysis of myelin and axonal remodeling in the uninjured motor network after stroke. Brain Connectivity. doi:10.1089/brain.2014.0245.

    PubMed Central  Google Scholar 

  • Lin, A. P., Ramadan, S., Stern, R. A., Box, H. C., Nowinski, C. J., Ross, B. D., et al. (2015). Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy. Alzheimer's Research & Therapy, 7(1), 13. doi:10.1186/s13195-015-0094-5.

    Article  CAS  Google Scholar 

  • Ling, G., Bandak, F., Armonda, R., Grant, G., & Ecklund, J. (2009). Explosive blast neurotrauma. [Review]. Journal of Neurotrauma, 26(6), 815–825. doi:10.1089/neu.2007.0484.

    Article  PubMed  Google Scholar 

  • Logan, G. D., Schachar, R. J., & Tannock, R. (2000). Executive control problems in childhood psychopathology: Stop-signal studies of attention deficit disorder. In S. Monsell (Ed.), Attention and performance XVIII (pp. 653–677). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lopez-Larson, M., King, J. B., McGlade, E., Bueler, E., Stoeckel, A., Epstein, D. J., et al. (2013). Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in veterans with suicide behaviors. Frontiers in Psychiatry, 4, 83. doi:10.3389/fpsyt.2013.00083.

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo, Q., Xu, D., Roskos, T., Stout, J., Kull, L., Cheng, X., et al. (2013). Complexity analysis of resting state magnetoencephalography activity in traumatic brain injury patients. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 30(20), 1702–1709. doi:10.1089/neu.2012.2679.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mac Donald, C. L., Johnson, A. M., Cooper, D., Nelson, E. C., Werner, N. J., Shimony, J. S., et al. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The New England Journal of Medicine, 364(22), 2091–2100. doi:10.1056/NEJMoa1008069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mac Donald, C., Johnson, A., Cooper, D., Malone, T., Sorrell, J., Shimony, J., et al. (2013). Cerebellar white matter abnormalities following primary blast injury in US military personnel. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. PloS One, 8(2), e55823. doi:10.1371/journal.pone.0055823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maikusa, N., Yamashita, F., Tanaka, K., Abe, O., Kawaguchi, A., Kabasawa, H., et al. (2013). Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom. [Research Support, Non-U.S. Gov’t]. Medical Physics, 40(6), 062303. doi:10.1118/1.4801913.

    Article  PubMed  Google Scholar 

  • Makoroff, K. L., Cecil, K. M., Care, M., & Ball, W. S., Jr. (2005). Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury. Pediatric Radiology, 35(7), 668–676. doi:10.1007/s00247-005-1441-7.

    Article  PubMed  Google Scholar 

  • Maksimovskiy, A. L., McGlinchey, R. E., Fortier, C. B., Salat, D. H., Milberg, W. P., & Oscar-Berman, M. (2014). White matter and cognitive changes in veterans diagnosed with alcoholism and PTSD. Journal of Alcoholism & Drug Dependence, 2(1), 144. doi:10.4172/2329-6488.1000144.

    Google Scholar 

  • Mamere, A. E., Saraiva, L. A., Matos, A. L., Carneiro, A. A., & Santos, A. C. (2009). Evaluation of delayed neuronal and axonal damage secondary to moderate and severe traumatic brain injury using quantitative MR imaging techniques. [Evaluation Studies]. AJNR. American Journal of Neuroradiology, 30(5), 947–952. doi:10.3174/ajnr.A1477.

    Article  CAS  PubMed  Google Scholar 

  • Marino, S., Ciurleo, R., Bramanti, P., Federico, A., & De Stefano, N. (2011). 1H-MR spectroscopy in traumatic brain injury. [Review]. Neurocritical Care, 14(1), 127–133. doi:10.1007/s12028-010-9406-6.

    Article  PubMed  Google Scholar 

  • Marquez de la Plata, C., Ardelean, A., Koovakkattu, D., Srinivasan, P., Miller, A., Phuong, V., et al. (2007). Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 24(4), 591–598. doi:10.1089/neu.2006.0214.

    Article  PubMed  Google Scholar 

  • Mascalchi, M., Toschi, N., Ginestroni, A., Giannelli, M., Nicolai, E., Aiello, M., et al. (2014). Gender, age-related, and regional differences of the magnetization transfer ratio of the cortical and subcortical brain gray matter. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 40(2), 360–366. doi:10.1002/jmri.24355.

    Article  PubMed  Google Scholar 

  • Matthews, S., Simmons, A., & Strigo, I. (2011a). The effects of loss versus alteration of consciousness on inhibition-related brain activity among individuals with a history of blast-related concussion. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 191(1), 76–79. doi:10.1016/j.pscychresns.2010.09.013.

    Article  PubMed  Google Scholar 

  • Matthews, S. C., Strigo, I. A., Simmons, A. N., O’Connell, R. M., Reinhardt, L. E., & Moseley, S. A. (2011b). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S69–S75. doi:10.1016/j.neuroimage.2010.04.269.

    Article  PubMed  Google Scholar 

  • Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Pediatrics, 129(1), 28–37. doi:10.1542/peds.2011-2083.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 32(11), 1825–1835. doi:10.1002/hbm.21151.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayer, A. R., Bedrick, E. J., Ling, J. M., Toulouse, T., & Dodd, A. (2014). Methods for identifying subject-specific abnormalities in neuroimaging data. Human Brain Mapping, 35(11), 5457–5470. doi:10.1002/hbm.22563.

    Article  PubMed  Google Scholar 

  • McGowan, J. C., Yang, J. H., Plotkin, R. C., Grossman, R. I., Umile, E. M., Cecil, K. M., et al. (2000). Magnetization transfer imaging in the detection of injury associated with mild head trauma. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. AJNR. American Journal of Neuroradiology, 21(5), 875–880.

    CAS  PubMed  Google Scholar 

  • Mendez, M. F., Owens, E. M., Reza Berenji, G., Peppers, D. C., Liang, L. J., & Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroRehabilitation, 32(2), 397–407. doi:10.3233/NRE-130861.

    PubMed  Google Scholar 

  • Mitsis, E. M., Riggio, S., Kostakoglu, L., Dickstein, D. L., Machac, J., Delman, B., et al. (2014). Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Translational Psychiatry, 4, e441. doi:10.1038/tp.2014.91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moffett, J. R., Arun, P., Ariyannur, P. S., & Namboodiri, A. M. (2013). N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. [Review]. Frontiers in Neuroenergetics, 5, 11. doi:10.3389/fnene.2013.00011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morey, R. A., Haswell, C. C., Selgrade, E. S., Massoglia, D., Liu, C., Weiner, J., et al. (2013). Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 34(11), 2986–2999. doi:10.1002/hbm.22117.

    Article  PubMed  Google Scholar 

  • Mutsaerts, H. J., Steketee, R. M., Heijtel, D. F., Kuijer, J. P., van Osch, M. J., Majoie, C. B., et al. (2014). Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla. [Research Support, Non-U.S. Gov’t]. PloS One, 9(8), e104108. doi:10.1371/journal.pone.0104108.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Narayana, P. A., Yu, X., Hasan, K. M., Wilde, E. A., Levin, H. S., Hunter, J. V., et al. (2015). Multi-modal MRI of mild traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage: Clinical, 7, 87–97. doi:10.1016/j.nicl.2014.07.010.

    Article  Google Scholar 

  • Nathan, D. E., Oakes, T. R., Yeh, P. H., French, L. M., Harper, J. F., Liu, W., et al. (2015). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connectivity, 5(2), 102–114. doi:10.1089/brain.2014.0273.

    Article  PubMed  Google Scholar 

  • Newbould, R. D., Nicholas, R., Thomas, C. L., Quest, R., Lee, J. S., Honeyfield, L., et al. (2014). Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. NeuroImage: Clinical, 4, 641–648. doi:10.1016/j.nicl.2014.02.004.

    Article  CAS  Google Scholar 

  • Newsome, M. R., Durgerian, S., Mourany, L., Scheibel, R. S., Lowe, M. J., Beall, E. B., et al. (2015). Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. NeuroImage: Clinical, 8, 543–553. doi:10.1016/j.nicl.2015.04.024.

    Article  Google Scholar 

  • Ng, T. S., Lin, A. P., Koerte, I. K., Pasternak, O., Liao, H., Merugumala, S., et al. (2014). Neuroimaging in repetitive brain trauma. [Review]. Alzheimer's Research & Therapy, 6(1), 10. doi:10.1186/alzrt239.

    Article  Google Scholar 

  • Niedermeyer, E. (2005). Electroencephalography: Basic principles, clinical applications, and related fields (5th ed.). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oz, G., Alger, J. R., Barker, P. B., Bartha, R., Bizzi, A., Boesch, C., et al. (2014). Clinical proton MR spectroscopy in central nervous system disorders. [Research Support, Non-U.S. Gov’t Review]. Radiology, 270(3), 658–679. doi:10.1148/radiol.13130531.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pagani, E., Bizzi, A., Di Salle, F., De Stefano, N., & Filippi, M. (2008). Basic concepts of advanced MRI techniques. [Review]. Neurological Sciences, 29(Suppl 3), 290–295. doi:10.1007/s10072-008-1001-7.

    Article  PubMed  Google Scholar 

  • Pasternak, O., Sochen, N., Gur, Y., Intrator, N., & Assaf, Y. (2009). Free water elimination and mapping from diffusion MRI. [Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 62(3), 717–730. doi:10.1002/mrm.22055.

    Article  PubMed  Google Scholar 

  • Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., et al. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S76–S82. doi:10.1016/j.neuroimage.2010.04.008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrie, E. C., Cross, D. J., Yarnykh, V. L., Richards, T., Martin, N. M., Pagulayan, K., et al. (2014). Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 31(5), 425–436. doi:10.1089/neu.2013.2952.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poole, V. N., Abbas, K., Shenk, T. E., Breedlove, E. L., Breedlove, K. M., Robinson, M. E., et al. (2014). MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. [Observational Study Research Support, Non-U.S. Gov’t]. Developmental Neuropsychology, 39(6), 459–473. doi:10.1080/87565641.2014.940619.

    Article  PubMed  Google Scholar 

  • Poole, V. N., Breedlove, E. L., Shenk, T. E., Abbas, K., Robinson, M. E., Leverenz, L. J., et al. (2015). Sub-concussive hit characteristics predict deviant brain metabolism in football athletes. [Research Support, Non-U.S. Gov’t]. Developmental Neuropsychology, 40(1), 12–17. doi:10.1080/87565641.2014.984810.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. doi:10.1073/pnas.98.2.676.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Annals of Neurology, 70(3), 374–383. doi:10.1002/ana.22455.

    Article  PubMed  Google Scholar 

  • Raymont, V., Salazar, A. M., Lipsky, R., Goldman, D., Tasick, G., & Grafman, J. (2010). Correlates of posttraumatic epilepsy 35 years following combat brain injury. [Research Support, N.I.H., Intramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neurology, 75(3), 224–229. doi:10.1212/WNL.0b013e3181e8e6d0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reider, G., II, Groswasser, Z., Ommaya, A. K., Schwab, K., Pridgen, A., Brown, H. R., et al. (2002). Quantitive imaging in late traumatic brain injury. Part I: late imaging parameters in closed and penetrating head injuries. [Clinical Trial]. Brain Injury, 16(6), 517–525. doi:10.1080/02699050110119141.

    Article  Google Scholar 

  • Robinson, M. E., Lindemer, E. R., Fonda, J. R., Milberg, W. P., McGlinchey, R. E., & Salat, D. H. (2015). Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. [Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 36(3), 911–922. doi:10.1002/hbm.22675.

    Article  PubMed  Google Scholar 

  • Ross, B. D., Ernst, T., Kreis, R., Haseler, L. J., Bayer, S., Danielsen, E., et al. (1998). 1H MRS in acute traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 8(4), 829–840.

    Article  CAS  PubMed  Google Scholar 

  • Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C. R., Tempel-Brami, C., Stein, E., et al. (2011). A mouse model of blast-induced mild traumatic brain injury. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Experimental Neurology, 232(2), 280–289. doi:10.1016/j.expneurol.2011.09.018.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., et al. (2012). Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images. [Research Support, Non-U.S. Gov’t]. Physics in Medicine and Biology, 57(18), 5715–5731. doi:10.1088/0031-9155/57/18/5715.

    Article  CAS  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. [Research Support, N.I.H., Extramural]. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi:10.1177/1545968306294730.

    Article  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 26(9), 1447–1461. doi:10.1089/neu.2008.0736.

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Lin, X., Steinberg, J. L., Radaideh, M., et al. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of the International Neuropsychological Society, 18(1), 89–100. doi:10.1017/S1355617711001433.

    Article  PubMed  Google Scholar 

  • Schuff, N., Neylan, T. C., Fox-Bosetti, S., Lenoci, M., Samuelson, K. W., Studholme, C., et al. (2008). Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. [Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 162(2), 147–157. doi:10.1016/j.pscychresns.2007.04.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selwyn, R., Hockenbury, N., Jaiswal, S., Mathur, S., Armstrong, R. C., & Byrnes, K. R. (2013). Mild traumatic brain injury results in depressed cerebral glucose uptake: an (18)FDG PET study. [Research Support, Non-U.S. Gov’t]. Journal of Neurotrauma, 30(23), 1943–1953. doi:10.1089/neu.2013.2928.

    Article  PubMed  Google Scholar 

  • Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Brain Imaging and Behavior, 6(2), 137–192. doi:10.1007/s11682-012-9156-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shutter, L., Tong, K. A., & Holshouser, B. A. (2004). Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. [Research Support, Non-U.S. Gov’t]. Journal of Neurotrauma, 21(12), 1693–1705. doi:10.1089/neu.2004.21.1693.

    Article  PubMed  Google Scholar 

  • Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., & Vagnozzi, R. (2001). N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurotrauma, 18(10), 977–991. doi:10.1089/08977150152693683.

    Article  CAS  PubMed  Google Scholar 

  • Sinson, G., Bagley, L. J., Cecil, K. M., Torchia, M., McGowan, J. C., Lenkinski, R. E., et al. (2001). Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. [Research Support, U.S. Gov’t, P.H.S.]. AJNR. American Journal of Neuroradiology, 22(1), 143–151.

    CAS  PubMed  Google Scholar 

  • Sokunbi, M. O., Linden, D. E., Habes, I., Johnston, S., & Ihssen, N. (2014). Real-time fMRI brain-computer interface: development of a “motivational feedback” subsystem for the regulation of visual cue reactivity. Frontiers in Behavioral Neuroscience, 8, 392. doi:10.3389/fnbeh.2014.00392.

    Article  PubMed Central  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 17(3), 1429–1436.

    Article  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 20(3), 1714–1722.

    Article  PubMed  Google Scholar 

  • Song, S. K., Yoshino, J., Le, T. Q., Lin, S. J., Sun, S. W., Cross, A. H., et al. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 26(1), 132–140. doi:10.1016/j.neuroimage.2005.01.028.

    Article  PubMed  Google Scholar 

  • Spielberg, J. M., McGlinchey, R. E., Milberg, W. P., & Salat, D. H. (2015). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biological Psychiatry, 78(3), 210–216. doi:10.1016/j.biopsych.2015.02.013.

    Article  PubMed  Google Scholar 

  • Sponheim, S. R., McGuire, K. A., Kang, S. S., Davenport, N. D., Aviyente, S., Bernat, E. M., et al. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S21–S29. doi:10.1016/j.neuroimage.2010.09.007.

    Article  PubMed  Google Scholar 

  • Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review]. Trends in Cognitive Sciences, 8(9), 418–425. doi:10.1016/j.tics.2004.07.008.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 6(2), 293–318. doi:10.1007/s11682-012-9157-4.

    Article  PubMed  Google Scholar 

  • Stocker, R. P., Cieply, M. A., Paul, B., Khan, H., Henry, L., Kontos, A. P., et al. (2014). Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 99, 207–214. doi:10.1016/j.neuroimage.2014.05.067.

    Article  CAS  PubMed  Google Scholar 

  • Symms, M., Jager, H. R., Schmierer, K., & Yousry, T. A. (2004). A review of structural magnetic resonance neuroimaging. [Review]. Journal of Neurology, Neurosurgery, and Psychiatry, 75(9), 1235–1244. doi:10.1136/jnnp.2003.032714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taber, K. H., Hurley, R. A., Haswell, C. C., Rowland, J. A., Hurt, S. D., Lamar, C. D., et al. (2015). White matter compromise in veterans exposed to primary blast forces. [Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 30(1), E15–E25. doi:10.1097/HTR.0000000000000030.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarapore, P. E., Findlay, A. M., Lahue, S. C., Lee, H., Honma, S. M., Mizuiri, D., et al. (2013). Resting state magnetoencephalography functional connectivity in traumatic brain injury. [Case Reports Research Support, N.I.H., Extramural]. Journal of Neurosurgery, 118(6), 1306–1316. doi:10.3171/2013.3.JNS12398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tate, D. F., York, G. E., Reid, M. W., Cooper, D. B., Jones, L., Robin, D. A., et al. (2014). Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. [Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 8(1), 102–109. doi:10.1007/s11682-013-9257-9.

    Article  CAS  PubMed  Google Scholar 

  • Tompkins, P., Tesiram, Y., Lerner, M., Gonzalez, L. P., Lightfoot, S., Rabb, C. H., et al. (2013). Brain injury: neuro-inflammation, cognitive deficit, and magnetic resonance imaging in a model of blast induced traumatic brain injury. Journal of Neurotrauma, 30(22), 1888–1897. doi:10.1089/neu.2012.2674.

    Article  PubMed  Google Scholar 

  • Tong, K. A., Ashwal, S., Holshouser, B. A., Shutter, L. A., Herigault, G., Haacke, E. M., et al. (2003). Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. [Comparative Study]. Radiology, 227(2), 332–339. doi:10.1148/radiol.2272020176.

    Article  PubMed  Google Scholar 

  • Tormenti, M., Krieger, D., Puccio, A. M., McNeil, M. R., Schneider, W., & Okonkwo, D. O. (2012). Magnetoencephalographic virtual recording: a novel diagnostic tool for concussion. [Controlled Clinical Trial Research Support, Non-U.S. Gov’t Validation Studies]. Neurosurgical Focus, 33(6), E9. doi:10.3171/2012.10.FOCUS12282. 1–7.

    Article  PubMed  Google Scholar 

  • Vagnozzi, R., Signoretti, S., Tavazzi, B., Floris, R., Ludovici, A., Marziali, S., et al. (2008). Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes--part III. [Controlled Clinical Trial]. Neurosurgery, 62(6), 1286–1295. doi:10.1227/01.neu.0000333300.34189.74. discussion 1295–1286.

    Article  PubMed  Google Scholar 

  • Vakhtin, A. A., Calhoun, V. D., Jung, R. E., Prestopnik, J. L., Taylor, P. A., & Ford, C. C. (2013). Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. Brain Injury, 27(11), 1304–1310. doi:10.3109/02699052.2013.823561.

    Article  PubMed  Google Scholar 

  • Wang, Z. (2014). Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 35(7), 2869–2875. doi:10.1002/hbm.22445.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, D. J., Alger, J. R., Qiao, J. X., Gunther, M., Pope, W. B., Saver, J. L., et al. (2013). Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - comparison with dynamic susceptibility contrast enhanced perfusion imaging. NeuroImage: Clinical, 3, 1–7. doi:10.1016/j.nicl.2013.06.017.

    Article  Google Scholar 

  • Wang, X., Cusick, M. F., Wang, Y., Sun, P., Libbey, J. E., Trinkaus, K., et al. (2014). Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NMR in Biomedicine, 27(7), 843–852. doi:10.1002/nbm.3129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Sun, P., Wang, Q., Trinkaus, K., Schmidt, R. E., Naismith, R. T., et al. (2015a). Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain, 138(Pt 5), 1223–1238. doi:10.1093/brain/awv046.

    Article  PubMed  Google Scholar 

  • Wang, Y., Sun, P., Wang, Q., Trinkaus, K., Schmidt, R. E., Naismith, R. T., et al. (2015b). Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain. doi:10.1093/brain/awv046.

    PubMed Central  Google Scholar 

  • Wang, Y., West, J. D., Bailey, J. N., Westfall, D. R., Xiao, H., Arnold, T. W., et al. (2015c). Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. [Research Support, N.I.H., Extramural]. Developmental Neuropsychology, 40(1), 40–44. doi:10.1080/87565641.2014.979927.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., et al. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 41(4), 1267–1277. doi:10.1016/j.neuroimage.2008.03.036.

    Article  CAS  PubMed  Google Scholar 

  • Wilde, E. A., Hunter, J. V., Newsome, M. R., Scheibel, R. S., Bigler, E. D., Johnson, J. L., et al. (2005). Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurotrauma, 22(3), 333–344. doi:10.1089/neu.2005.22.333.

    Article  PubMed  Google Scholar 

  • Wolf, M. E., Layer, V., Gregori, J., Griebe, M., Szabo, K., Gass, A., et al. (2014). Assessment of perfusion deficits in ischemic stroke using 3D-GRASE arterial spin labeling magnetic resonance imaging with multiple inflow times. [Research Support, Non-U.S. Gov’t]. Journal of Neuroimaging, 24(5), 453–459.

    Article  PubMed  Google Scholar 

  • Yeo, R. A., Gasparovic, C., Merideth, F., Ruhl, D., Doezema, D., & Mayer, A. R. (2011). A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 28(1), 1–11. doi:10.1089/neu.2010.1578.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoo, R. E., Yun, T. J., Rhim, J. H., Yoon, B. W., Kang, K. M., Choi, S. H., et al. (2015). Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. [Research Support, Non-U.S. Gov’t]. Stroke, 46(2), 564–567. doi:10.1161/STROKEAHA.114.007797.

    Article  PubMed  Google Scholar 

  • Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. [Research Support, Non-U.S. Gov’t]. Brain Connectivity, 4(9), 690–701. doi:10.1089/brain.2014.0262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yurgelun-Todd, D. A., Bueler, C. E., McGlade, E. C., Churchwell, J. C., Brenner, L. A., & Lopez-Larson, M. P. (2011). Neuroimaging correlates of traumatic brain injury and suicidal behavior. [Comparative Study Research Support, Non-U.S. Gov’t]. The Journal of Head Trauma Rehabilitation, 26(4), 276–289. doi:10.1097/HTR.0b013e31822251dc.

    Article  PubMed  Google Scholar 

  • Zaharchuk, G., Straka, M., Marks, M. P., Albers, G. W., Moseley, M. E., & Bammer, R. (2010). Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 63(6), 1548–1556. doi:10.1002/mrm.22329.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, S., & Li, C. S. (2012). Functional networks for cognitive control in a stop signal task: independent component analysis. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 33(1), 89–104. doi:10.1002/hbm.21197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, J., Mitsis, E. M., Chu, K., Newmark, R. E., Hazlett, E. A., & Buchsbaum, M. S. (2010). Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. Journal of Neurotrauma, 27(1), 35–49. doi:10.1089/neu.2009.1049.

    Article  PubMed  Google Scholar 

  • Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. [Research Support, Non-U.S. Gov’t]. NeuroImage, 61(4), 1000–1016. doi:10.1016/j.neuroimage.2012.03.072.

    Article  PubMed  Google Scholar 

  • Zhang, K., Herzog, H., Mauler, J., Filss, C., Okell, T. W., Kops, E. R., et al. (2014). Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. [Comparative Study Research Support, Non-U.S. Gov’t]. Journal of Cerebral Blood Flow and Metabolism, 34(8), 1373–1380. doi:10.1038/jcbfm.2014.92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zivadinov, R., Dwyer, M. G., Markovic-Plese, S., Kennedy, C., Bergsland, N., Ramasamy, D. P., et al. (2014). Effect of treatment with interferon beta-1a on changes in voxel-wise magnetization transfer ratio in normal appearing brain tissue and lesions of patients with relapsing-remitting multiple sclerosis: a 24-week, controlled pilot study. [Research Support, Non-U.S. Gov’t]. PloS One, 9(3), e91098. doi:10.1371/journal.pone.0091098.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors recognize the support of the US Department of Veterans Affairs (EAW, BAT, SG, MRN, MES, SG), the VA MERIT review grant program (1I01RX000684-01A2: SG, 1I01RX001062-01A1: EAW, MRN, and 1 I01 RX000928: MES, SB), and VA SPIRE program (VA 1 I21RX001565 BAT, and VA 1 I21RX001608 MRN); the Department of Defense Office of the Congressionally Directed Medical Research Programs (CDMRP) (W81XWH-10-1-0835: APL; X81XWH-07-CC-CSDoD: MES, SB), the National Institutes of Health (R01-NS078337: APL, MES, SB), Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Material Command (USAMRMC; W81XWH-13-2-0025: DFT), United States Army Medical Research Acquisition Activity (USAMRAA; W81XWH-09-2-0160: JRS, SG), the Chronic Effects Neurotrauma Consortium (CENC; PT108802-SC106187 and 1W81XWH-13-2-0095), and the Alzheimer’s Drug Discovery Foundation (SG). We also wish to thank Rhonda O’Donovan for her assistance in manuscript preparation.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth A. Wilde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilde, E.A., Bouix, S., Tate, D.F. et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging and Behavior 9, 367–402 (2015). https://doi.org/10.1007/s11682-015-9444-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9444-y

Keywords

Navigation