Skip to main content

Advertisement

Log in

Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarsland, D., Hutchinson, M., & Larsen, J. P. (2003). Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. International Journal of Geriatric Psychiatry, 18, 937–941.

    Article  CAS  PubMed  Google Scholar 

  • Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., Burn, D., Barone, P., Pagonabarraga, J., Allcock, L., Santangelo, G., Foltynie, T., Janvin, C., Larsen, J. P., Barker, R. A., & Emre, M. (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75, 1062–1069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–75. Review.

    Article  CAS  Google Scholar 

  • Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146. Review.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, D. G., & Cowan, W. M. (1980). Subcortical afferents to the hippocampal formation in the monkey. The Journal of Comparative Neurology, 189, 573–591.

    Article  CAS  PubMed  Google Scholar 

  • Arimura, N., Nakayama, Y., Yamagata, T., Tanji, J., & Hoshi, E. (2013). Involvement of the globus pallidus in behavioral goal determination and action specification. Journal of Neuroscience, 33, 13639–13653.

    Article  CAS  PubMed  Google Scholar 

  • Baglio, F., Blasi, V., Falini, A., Farina, E., Mantovani, F., Olivotto, F., Scotti, G., Nemni, R., & Bozzali, M. (2011). Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiology of Aging, 32, 115–24.

    Article  PubMed  Google Scholar 

  • Baudrexel, S., Witte, T., Seifried, C., von Wegner, F., Beissner, F., Klein, J. C., Steinmetz, H., Deichmann, R., Roeper, J., & Hilker, R. (2011). Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage, 55, 1728–38.

    Article  PubMed  Google Scholar 

  • Baudrexel, S., Seifried, C., Penndorf, B., Klein, J. C., Middendorp, M., Steinmetz, H., Grünwald, F., & Hilker, R. (2014). The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy. Movement Disorders, 29, 380–387.

    Article  CAS  PubMed  Google Scholar 

  • Beck, A., Steer, R., & Brown, G. (1996). Manual for the beck depression inventory-II. San Antonio: Psychological Corporation.

    Google Scholar 

  • Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21, 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Betchen, S. A., & Kaplitt, M. (2003). Future and current surgical therapies in Parkinson’s disease. Current Opinion in Neurology, 16, 487–493.

    PubMed  Google Scholar 

  • Bhatia, K. P., & Marsden, C. D. (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain, 117, 859–876.

    Article  PubMed  Google Scholar 

  • Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Chen, L. C., & Woldorff, M. G. (2011). The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One, 6, e26386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buhmann, C., Binkofski, F., Klein, C., Büchel, C., van Eimeren, T., Erdmann, C., Hedrich, K., Kasten, M., Hagenah, J., Deuschl, G., Pramstaller, P. P., & Siebner, H. R. (2005). Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain, 128, 2281–2290.

    Article  CAS  PubMed  Google Scholar 

  • Caballol, N., Martí, M. J., & Tolosa, E. (2007). Cognitive dysfunction and dementia in Parkinson disease. Movement disorders: Official Journal of the Movement Disorder Society, 22, S358–366.

    Article  Google Scholar 

  • Cameron, I. G., Watanabe, M., Pari, G., & Munoz, D. P. (2010). Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia, 48, 1948–1957.

    Article  PubMed  Google Scholar 

  • Camicioli, R., Gee, M., Bouchard, T. P., Fisher, N. J., Hanstock, C. C., Emery, D. J., & Martin, W. R. (2009). Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism & Related Disorders, 15, 187–195.

    Article  Google Scholar 

  • Catalan, M. J., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain, 122, 483–495.

    Article  PubMed  Google Scholar 

  • Cooper, J., Sagar, H., Doherty, S., Jordan, N., Tidswell, P., & Sullivan, E. (1992). Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain, 115, 1701–1725.

    Article  PubMed  Google Scholar 

  • Costa, R. M., Lin, S. C., Sotnikova, T. D., Cyr, M., Gainetdinov, R. R., Caron, M. G., & Nicolelis, M. A. (2006). Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron, 52(2), 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Crovitz, H. F., & Zener, K. (1962). A group-test for assessing hand- and eye-dominance. The American Journal of Psychology, 75, 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122, 1437–1448.

    Article  PubMed  Google Scholar 

  • Davis, S., Dennis, N., Daselaar, S., Fleck, M., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 1201–1209.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24. Review.

    Article  PubMed  Google Scholar 

  • Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118, 115–128.

    Article  PubMed  Google Scholar 

  • Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s disease: a review. Journal of Neuropsychology, 7, 193–224.

    Article  PubMed  Google Scholar 

  • Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 2–8. Review.

    Article  CAS  PubMed  Google Scholar 

  • Dzirasa, K., Ramsey, A. J., Takahashi, D. Y., Stapleton, J., Potes, J. M., Williams, J. K., Gainetdinov, R. R., Sameshima, K., Caron, M. G., & Nicolelis, M. A. (2009). Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. Journal of Neuroscience, 29, 8215–8224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esposito, F., Tessitore, A., Giordano, A., De Micco, R., Paccone, A., Conforti, R., Pignataro, G., Annunziato, L., & Tedeschi, G. (2013). Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain, 136, 710–725.

    Article  PubMed  Google Scholar 

  • Fahn, S., & Elton, R. L. (1987). Members of the UPDRS Development Committee. Unified Parkinson’s Disease Rating Scale. In D. Fahn, C. D. Marsden, D. Calne, & M. Goldstein (Eds.), Recent development in parkinson’s disease, Vol. 2 (pp. 153–163). Florham Park: Maacmillan Healthcare Information. 293–304.

    Google Scholar 

  • Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences in information-processing rate and account: implications for group differences in response latency. Psychological Bulletin, 125, 777–799.

    Article  CAS  PubMed  Google Scholar 

  • Fernández de Bobadilla, R., Pagonabarraga, J., Martínez-Horta, S., Pascual-Sedano, B., Campolongo, A., & Kulisevsky, J. (2013). Parkinson’s disease-cognitive rating scale: psychometrics for mild cognitive impairment. Movement Disorders, 28, 1376–1383.

    Article  PubMed  Google Scholar 

  • Fling, B. W., Cohen, R. G., Mancini, M., Carpenter, S. D., Fair, D. A., Nutt, J. G., & Horak, F. B. (2014). Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One, 9, e100291.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuentes, R., Petersson, P., Siesser, W., Caron, M. G., & Nicolelis, M. A. (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science, 323, 1578–1582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelb, D. J., Oliver, E., & Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Archives of Neurology, 56, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Giguere, M., & Goldman-Rakic, P. S. (1988). Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. The Journal of Comparative Neurology, 277, 195–213.

    Article  CAS  PubMed  Google Scholar 

  • Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86, 141–55.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265, 1826–1831.

    Article  CAS  PubMed  Google Scholar 

  • Greenhouse, I., Gould, S., Houser, M., & Aron, A. R. (2013). Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson’s disease. Neuropsychologia, 51, 1302–1309.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: the role of the thalamus. Brain Research Bulletin, 78, 69–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M., & Snyder, A. Z. (2012). Resting state functional connectivity of the striatum in Parkinson’s disease. Brain, 135, 3699–3711.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrison, B. J., Shaw, M., Yücel, M., Purcell, R., Brewer, W. J., Strother, S. C., Egan, G. F., Olver, J. S., Nathan, P. J., & Pantelis, C. (2005). Functional connectivity during Stroop task performance. Neuroimage, 24, 181–191.

    Article  PubMed  Google Scholar 

  • Hartberg, C. B., Sundet, K., Rimol, L. M., Haukvik, U. K., Lange, E. H., Nesvåg, R., Melle, I., Andreassen, O. A., & Agartz, I. (2011). Subcortical brain volumes relate to neurocognition in schizophrenia and bipolar disorder and healthy controls. Prog. Neuropsychopharmacol. Biological Psychiatry, 35, 1122–1130.

    CAS  Google Scholar 

  • Helmich, R. C., Derikx, L. C., Bakker, M., Scheeringa, R., Bloem, B. R., & Toni, I. (2010). Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cerebral Cortex, 20, 1175–1186.

    Article  PubMed  Google Scholar 

  • Helmich, R. C., Janssen, M. J., Oyen, W. J., Bloem, B. R., & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Annals of Neurology, 69, 269–281.

    Article  PubMed  Google Scholar 

  • Herzog, J., Volkmann, J., Krack, P., Kopper, F., Pötter, M., Lorenz, D., Steinbach, M., Klebe, S., Hamel, W., Schrader, B., Weinert, D., Müller, D., Mehdorn, H. M., & Deuschl, G. (2003). Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 18, 1332–1337.

    Article  Google Scholar 

  • Hoehn, M., & Yahr, M. (1967). Parkinsonism: onset, progression and mortality. Neurology, 17, 427–442.

    Article  CAS  PubMed  Google Scholar 

  • Honey, G. D., Suckling, J., Zelaya, F., Long, C., Routledge, C., Jackson, S., Ng, V., Fletcher, P. C., Williams, S. C., Brown, J., & Bullmore, E. T. (2003). Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain, 126, 1767–1781.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, L., & Méndez, A. (2013). It is not what you expect: dissociating conflict adaptation from expectancies in a Stroop task. Journal of Experimental Psychology. Human Perception and Performance, 39, 271–284.

    Article  PubMed  Google Scholar 

  • Jurica, P. J., Leitten, C. L., Mattis, S. (2004). DRS-2 Dementia Rating Scale-2. Professional manual: Psychological Assessment Resources.

  • Kim, S. H., Park, K. H., Sung, Y. H., Lee, Y. B., Park, H. M., & Shin, D. J. (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: review of two cases. Journal of the Neurological Sciences, 272, 178–182.

    Article  PubMed  Google Scholar 

  • Kim, C., Johnson, N. F., & Gold, B. T. (2014). Conflict adaptation in prefrontal cortex: now you see it, now you don’t. Cortex, 50, 76–85.

    Article  PubMed  Google Scholar 

  • Kirsch-Darrow, L., Fernandez, H. H., Marsiske, M., Okun, M. S., & Bowers, D. (2006). Dissociating apathy and depression in Parkinson disease. Neurology, 67, 33–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koerts, J., Van Beilen, M., Tucha, O., Leenders, K. L., & Brouwer, W. H. (2011). Executive functioning in daily life in Parkinson’s disease: initiative, planning and multi-task performance. PLoS One, 6(12), e29254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwak, Y., Peltier, S., Bohnen, N. I., Müller, M. L., Dayalu, P., & Seidler, R. D. (2010). Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Frontiers in Systems Neuroscience, 4, 143.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lebedev, A. V., Westman, E., Simmons, A., Lebedeva, A., Siepel, F. J., Pereira, J. B., & Aarsland, D. (2014). Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Frontiers in Systems Neuroscience, 8, 45.

    PubMed Central  PubMed  Google Scholar 

  • Leisman, G., & Melillo, R. (2013). The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Reviews in the Neurosciences, 24, 9–25.

    Article  PubMed  Google Scholar 

  • Li, S., Arbuthnott, G. W., Jutras, M. J., Goldberg, J. A., & Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deepbrain stimulation. Journal of Neurophysiology, 98, 3525–3537.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22, 1097–1106.

    Article  PubMed  Google Scholar 

  • Matelli, M., Luppino, G., Fogassi, L., & Rizzolatti, G. (1989). Thalamic input to inferior area 6 and area 4 in the macaque monkey. The Journal of Comparative Neurology, 280, 468–488.

    Article  CAS  PubMed  Google Scholar 

  • Martinu, K., & Monchi, O. (2013). Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behavoral Neuroscience, 127, 222–236.

    Article  Google Scholar 

  • McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200.

    Article  CAS  PubMed  Google Scholar 

  • Milham, M. P., & Banich, M. T. (2005). Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Human Brain Mapping, 25, 328–335.

    Article  PubMed  Google Scholar 

  • Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44, 893–905.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neuroscience Research, 43, 111-117.

  • Norita, M., & Kawamura, K. (1980). Subcortical afferents to the monkey amygdala: an HRP study. Brain Research, 190, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Álvarez, M., Álvarez, L., Pavón, N., Rodríguez-Oroz, M. C., Macías, R., Obeso, J. A., & Jahanshahi, M. (2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Experimental Brain Research, 212, 371–384.

  • Obeso, I., Wilkinson, L., Rodríguez-Oroz, M. C., Obeso, J. A., & Jahanshahi, M. (2013). Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease. Experimental Brain Research, 226, 451–462.

    Article  PubMed  Google Scholar 

  • Paolo, A. M., Tröster, A. I., Glatt, S. L., Hubble, J. P., & Koller, W. C. (1995). Differentiation of the dementias of Alzheimer’s and Parkinson’s disease with the dementia rating scale. Journal of Geriatric Psychiatry and Neurology, 8, 184–188.

    Article  CAS  PubMed  Google Scholar 

  • Park, D. C., Polk, T. A., Mikels, J. A., Taylor, S. F., & Marshuetz, C. (2001). Cerebral aging: integration of brain and behavioral models of cognitive function. Dialogues in Clinical Neuroscience, 3, 151–165.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pasquereau, B., Nadjar, A., Arkadir, D., Bezard, E., Goillandeau, M., Bioulac, B., Gross, C. E., & Boraud, T. (2007). Shaping of motor responses by incentive values through the basal ganglia. Journal of Neuroscience, 27(5), 1176–1183.

    Article  CAS  PubMed  Google Scholar 

  • Pedraza, O., Lucas, J. A., Smith, G. E., Petersen, R. C., Graff-Radford, N. R., & Ivnik, R. J. (2010). Robust and expanded norms for the Dementia rating scale. Archives of Clinical Neuropsychology, 25, 347–358.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pirogovsky, E., Schiehser, D. M., Litvan, I., Obtera, K. M., Burke, M. M., Lessig, S. L., Song, D. D., Liu, L., & Filoteo, J. V. (2014). The utility of the Mattis Dementia Rating Scale in Parkinson’s disease mild cognitive impairment. Parkinsonism and Related Disorders, 20, 627–631.

    Article  PubMed  Google Scholar 

  • Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S., & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Annals of Neurology, 32, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5, 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Poston, K. L., & Eidelberg, D. (2012). Functional brain networks and abnormal connectivity in the movement disorders. Neuroimage, 62, 2261–2270.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., & Obeso, J. A. (2009). Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurology, 8, 1128–1139.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, N. S., Keihaninejad, S., Shakespeare, T. J., Lehmann, M., Crutch, S. J., Malone, I. B., Thornton, J. S., Mancini, L., Hyare, H., Yousry, T., Ridgway, G. R., Zhang, H., Modat, M., Alexander, D. C., Rossor, M. N., Ourselin, S., & Fox, N. C. (2013). Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain, 136, 1399–1414.

    Article  PubMed Central  PubMed  Google Scholar 

  • Salo, R., Henik, A., & Robertson, L. C. (2001). Interpreting Stroop interference: an analysis of differences between task versions. Neuropsychology, 15, 462–471.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Lopez, J., Fernandez, T., Silva-Pereyra, J., Martinez Mesa, J. A., & Di Russo, F. (2014). Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study. PLoS One, 9, e91112.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulte, T., Mueller-Oehring, E. M., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2005). Differential effect of HIV infection and alcoholism on conflict processing, attentional allocation, and perceptual load: evidence from a Stroop Match-to-Sample task. Biological Psychiatry, 57, 67–75.

    Article  PubMed  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Javitz, H., Pfefferbaum, A., & Sullivan, E. V. (2008). Callosal compromise differentially affects conflict processing and attentional allocation in alcoholism, HIV, and their comorbidity. Brain Imaging and Behavior, 2, 27–38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Vinco, S., Hoeft, F., Pfefferbaum, A., & Sullivan, E. V. (2009). Double dissociation between action-driven and perception-driven conflict resolution invoking anterior versus posterior brain systems. Neuroimage, 48(2), 381–390.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Chanraud, S., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2011). Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiology of Aging, 32, 2075–2090.

    Article  PubMed Central  PubMed  Google Scholar 

  • Song, D. D., & Haber, S. N. (2000). Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. Journal of Neuroscience, 20, 5102–5114.

    CAS  PubMed  Google Scholar 

  • Stafford, T., & Gurney, K. N. (2007). Biologically constrained action selection improves cognitive control in a model of the Stroop task. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 362, 1671–1684.

    Article  PubMed  Google Scholar 

  • Stanic, D., Parish, C. L., Zhu, W. M., Krstew, E. V., Lawrence, A. J., Drago, J., Finkelstein, D. I., & Horne, M. K. (2003). Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 86, 329–343.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins, G. T., & Goetz, C. G. (1998). Factor structure of the Unified Parkinson’s disease rating scale: motor examination section. Movement Disorders, 13, 633–636.

    Article  CAS  PubMed  Google Scholar 

  • Steinhauser, M., & Hübner, R. (2009). Distinguishing response conflict and task conflict in the Stroop task: evidence from ex-Gaussian distribution analysis. Journal of Experimental Psychology. Human Perception and Performance, 35, 1398–1412.

    Article  PubMed  Google Scholar 

  • Strafella, A. P., Ko, J. H., Grant, J., Fraraccio, M., & Monchi, O. (2005). Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. European Journal of Neuroscience, 22, 2946–2952.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., Cirillo, G., Barone, P., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79, 2226–2232.

    Article  PubMed  Google Scholar 

  • Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. Journal of Neuroscience, 34, 932–940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Nuenen, B. F., Helmich, R. C., Buenen, N., van de Warrenburg, B. P., Bloem, B. R., & Toni, I. (2012). Compensatory activity in the extrastriate body area of Parkinson’s disease patients. Journal of Neuroscience, 32, 9546–9553.

    Article  PubMed  Google Scholar 

  • Vandenbossche, J., Deroost, N., Soetens, E., Spildooren, J., Vercruysse, S., Nieuwboer, A., & Kerckhofs, E. (2011). Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabilitation and Neural Repair, 25, 765–773.

    Article  PubMed  Google Scholar 

  • Vassar, S. D., Bordelon, Y. M., Hays, R. D., Diaz, N., Rausch, R., Mao, C., & Vickrey, B. G. (2012). Confirmatory factor analysis of the motor unified Parkinson’s disease rating scale. Parkinson’s Disease, 2012, 719167. doi:10.1155/2012/719167.

  • Wang, T., Chen, Z., Zhao, G., Hitchman, G., Liu, C., Zhao, X., Liu, Y., & Chen, A. (2014). Linking inter-individual differences in the conflict adaptation effect to spontaneous brain activity. Neuroimage, 90, 146–152.

    Article  PubMed  Google Scholar 

  • Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128, 2250–2259.

    Article  PubMed  Google Scholar 

  • Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., & Chan, P. (2009). Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neuroscience Letter, 460, 6–10.

    Article  CAS  Google Scholar 

  • Wu, T., Wang, J., Wang, C., Hallett, M., Zang, Y., Wu, X., & Chan, P. (2012). Basal ganglia circuits changes in Parkinson’s disease patients. Neuroscience Letter, 524, 55–59.

    Article  CAS  Google Scholar 

  • Wu, T., Liu, J., Zhang, H., Hallett, M., Zheng, Z., Chan, P. (2014). Attention to automatic movements in Parkinson's Disease: Modified automatic mode in the Striatum. Cerebral Cortex, Epub ahead of print.

  • Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage, 35, 222–233.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Support: AA018022, AA012388, AA017168, AA010723, AA017923, NIH/NINDS K23 NS075097, NIH/NINDS P50 NS071675, Michael J. Fox Foundation for Parkinson’s disease

Conflict of Interest

Authors Eva M. Müller-Oehring, Edith V. Sullivan, Adolf Pfefferbaum, Neng C. Huang, Kathleen L. Poston, Helen M. Bronte-Stewart, and Tilman Schulte declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Müller-Oehring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 65 kb)

Supplementary Table 2

(DOCX 67 kb)

Supplementary Table 3

(DOCX 63 kb)

Supplementary Table 4

(DOCX 64 kb)

Supplementary Table 5

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Oehring, E.M., Sullivan, E.V., Pfefferbaum, A. et al. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson’s disease. Brain Imaging and Behavior 9, 619–638 (2015). https://doi.org/10.1007/s11682-014-9317-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9317-9

Keywords

Navigation