Skip to main content
Log in

Fusion analysis of functional MRI data for classification of individuals based on patterns of activation

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Classification of individuals based on patterns of brain activity observed in functional MRI contrasts may be helpful for diagnosis of neurological disorders. Prior work for classification based on these patterns have primarily focused on using a single contrast, which does not take advantage of complementary information that may be available in multiple contrasts. Where multiple contrasts are used, the objective has been only to identify the joint, distinct brain activity patterns that differ between groups of subjects; not to use the information to classify individuals. Here, we use joint Independent Component Analysis (jICA) within a Support Vector Machine (SVM) classification method, and take advantage of the relative contribution of activation patterns generated from multiple fMRI contrasts to improve classification accuracy. Young (age: 19–26) and older (age: 57–73) adults (16 each) were scanned while listening to noise alone and to speech degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Functional contrasts based on these conditions (and a silent baseline condition) were used within jICA to generate spatially independent joint activation sources and their corresponding modulation profiles. Modulation profiles were used within a non-linear SVM framework to classify individuals as young or older. Results demonstrate that a combination of activation maps across the multiple contrasts yielded an area under ROC curve of 0.86, superior to classification resulting from individual contrasts. Moreover, class separability, measured by a divergence criterion, was substantially higher when using the combination of activation maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Available online at http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics

References

  • Arribas, J. I., Calhoun, V. D., & Adali, T. (2010). Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. Biomedical Engineering, IEEE Transactions On, 57(12), 2850–2860.

    Article  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun, V. D., & Adali, T. (2009). Feature-based fusion of medical imaging data. Information Technology in Biomedicine, IEEE Transactions On, 13(5), 711–720.

    Article  Google Scholar 

  • Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun, V. D., Adali, T., Giuliani, N., Pekar, J., Kiehl, K., & Pearlson, G. (2006a). Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Human Brain Mapping, 27(1), 47–62.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun, V. D., Adali, T., Kiehl, K. A., Astur, R., Pekar, J. J., & Pearlson, G. D. (2006b). A method for multitask fMRI data fusion applied to schizophrenia. Human Brain Mapping, 27(7), 598–610. doi:10.1002/hbm.20204.

    Article  PubMed Central  PubMed  Google Scholar 

  • Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., & Kiehl, K. A. (2008). Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping, 29(11), 1265–1275.

    Article  PubMed Central  PubMed  Google Scholar 

  • Calhoun, V. D., Liu, J., & AdalI, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45(1), S163–S172.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chee, M. W. L., Zheng, H., Goh, J. O. S., Park, D., & Sutton, B. P. (2011). Brain structure in young and old East asians and westerners: comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 23(5), 1065–1079.

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi, K., Yang, Z., Hu, X., & Mayberg, H. (2008). A combined functional-structural connectivity analysis of major depression using joint independent components analysis. Toronto: Psychiatric MRI/MRS.

    Google Scholar 

  • Coleman, M. R., Rodd, J. M., Davis, M. H., Johnsrude, I. S., Menon, D. K., Pickard, J. D., et al. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 130(10), 2494–2507.

    Google Scholar 

  • Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270.

    Article  PubMed  Google Scholar 

  • Daunizeau, J., Laufs, H., & Friston, K. J. (2010). EEG + fMRI information fusion: Biophysics and data analysis. In C Mulert & L Lemieux (Eds.), EEG - fMRI (pp. 511–526). Springer Berlin Heidelberg. doi:10.1007/978-3-540-87919-0_25

  • Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. The Journal of Neuroscience, 23(8), 3423.

    CAS  PubMed  Google Scholar 

  • Davis, M. H., Ford, M. A., Kherif, F., & Johnsrude, I. S. (2011). Does semantic context benefit speech understanding through “Top–Down” processes? Evidence from time-resolved sparse fMRI. Journal of Cognitive Neuroscience, 23(12), 1–3932 (Early Access).

    Article  Google Scholar 

  • De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43(1), 44–58.

    Article  PubMed  Google Scholar 

  • Demirci, O., Clark, V. P., & Calhoun, V. D. (2008). A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia. NeuroImage, 39(4), 1774–1782.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan, Y., Liu, Y., Wu, H., Hao, Y., Liu, H., Liu, Z., et al. (2011). Discriminant analysis of functional connectivity patterns on grassmann manifold. NeuroImage, 56(4), 2058–2067.

    Article  PubMed  Google Scholar 

  • Ford, J., Farid, H., Makedon, F., Flashman, L. A., McAllister, T. W., Megalooikonomou, V., et al. (2003). Patient classification of fMRI activation maps. Medical image computing and computer-assisted intervention-MICCAI 2003 (pp. 58–65) Springer. doi:10.1007/978-3-540-39903-2_8

  • Friston, K., Frith, C., Turner, R., & Frackowiak, R. (1995a). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2PA), 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K., Holmes, A., Poline, J., Grasby, P., Williams, S., Frackowiak, R., et al. (1995b). Analysis of fMRI time-series revisited. NeuroImage, 2(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., Price, C., Büchel, C., & Worsley, K. (1999). Multisubject fMRI studies and conjunction analyses. NeuroImage, 10(4), 385–396.

    Article  CAS  PubMed  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Fristen, K., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1), 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Halchenko, Y. O., Hanson, S. J., & Pearlmutter, B. A. (2005). Multimodal integration: fMRI, MRI, EEG, MEG. Advanced Image Processing in Magnetic Resonance Imaging (223–265).

  • Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.

    Article  CAS  PubMed  Google Scholar 

  • Hero, A. O., Ma, B., Michel, O., & Gorman, J. (2001). Alpha-divergence for classification, indexing and retrieval. Communication and Signal Processing Laboratory, Technical Report CSPL-328, U.Mich.

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4), 411–430.

    Article  PubMed  Google Scholar 

  • Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452(7185), 352–355.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 1251–1266.

    Article  PubMed  Google Scholar 

  • Liu, Z., Ding, L., & He, B. (2006). Integration of EEG/MEG with MRI and fMRI. Engineering in Medicine and Biology Magazine, IEEE, 25(4), 46–53.

    Article  Google Scholar 

  • Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone‐Bizzozero, N. I., & Calhoun, V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30(1), 241–255.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma, L., Wang, B., Chen, X., & Xiong, J. (2007). Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magnetic Resonance Imaging, 25(1), 47–56.

    Article  PubMed  Google Scholar 

  • MacDonald, H. (2008). Behavioural and neuroimaging studies of the influence of semantic context on the perception of speech in noise. (Master of Science, Department of Neuroscience, Queen’s University). Thesis (Master, Neuroscience Studies), Queen’s University.

  • MacDonald, H., Davis, M. H., Pichora-Fuller, K., & Johnsrude, I. S. (2008). Contextual influences: perception of sentences in noise is facilitated similarly in young and older listeners by meaningful semantic context; neural correlates explored via functional magnetic resonance imaging (fMRI). The Journal of the Acoustical Society of America, 123(5), 3887.

    Article  Google Scholar 

  • McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., et al. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M. A., et al. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57, 145–175.

    Article  Google Scholar 

  • Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMRI—an introductory guide. Social Cognitive and Affective Neuroscience, 4(1), 101–109.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural images from human brain activity. Neuron, 63(6), 902–915.

    Article  CAS  PubMed  Google Scholar 

  • Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I., Saberi, K., et al. (2010). Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20(10), 2486–2495.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peelle, J. E., Johnsrude, I. S., & Davis, M. H. (2010). Hierarchical processing for speech in human auditory cortex and beyond. Frontiers in Human Neuroscience, 4, 51.

    PubMed Central  PubMed  Google Scholar 

  • Pereira, F. (2007). Beyond brain blobs: Machine learning classifiers as instruments for analyzing functional magnetic resonance imaging data ProQuest.

  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1), S199–S209.

    Article  PubMed Central  PubMed  Google Scholar 

  • Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(3), 61-74.

    Google Scholar 

  • Ramezani, M., & Ghaemmaghami, S. (2010). Towards genetic feature selection in image steganalysis. Consumer Communications and Networking Conference (CCNC), IEEE, 1–4.

  • Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261.

    Article  PubMed  Google Scholar 

  • Savopol, F., & Armenakis, C. (2002). Merging of heterogeneous data for emergency mapping: data integration or data fusion? International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(4), 668–674. doi:10.3389/fnhum.2010.00051

  • Schroeder, M. R. (1968). Reference signal for signal quality studies. The Journal of the Acoustical Society of America, 44(6), 1735–1736.

    Article  Google Scholar 

  • Schrouff, J., Kussé, C., Wehenkel, L., Maquet, P., & Phillips, C. (2012). Decoding semi-constrained brain activity from fMRI using support vector machines and gaussian processes. PLoS One, 7(4), e35860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Specht, K., Zahn, R., Willmes, K., Weis, S., Holtel, C., Krause, B. J., et al. (2009). Joint independent component analysis of structural and functional images reveals complex patterns of functional reorganisation in stroke aphasia. NeuroImage, 47(4), 2057–2063.

    Article  PubMed  Google Scholar 

  • Sui, J., Adali, T., Pearlson, G. D., Clark, V. P., & Calhoun, V. D. (2009a). A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework. Human Brain Mapping, 30(9), 2953–2970.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sui, J., Adali, T., Pearlson, G. D., & Calhoun, V. D. (2009b). An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. NeuroImage, 46(1), 73–86.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sui, J., Adali, T., Pearlson, G., Yang, H., Sponheim, S. R., White, T., et al. (2010a). A CCA ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. NeuroImage, 51(1), 123–134. doi:10.1016/j.neuroimage.2010.01.069

  • Sui, J., Adali, T., Li, Y., Yang, H., & Calhoun, V. D. (2010b). A review of multivariate methods in brain imaging data fusion. Medical Imaging 2010 - Biomedical Applications in Molecular, Structural, and Functional, Imaging, 7626 (pp. 1–11). doi:10.1117/12.843922

  • Theodoridis, S., & Koutroumbas, K. (2003). Pattern recognition. New York: Academic Press.

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank the Natural Sciences and Engineering Research Council (NSERC) and the Canadian Institutes of Health Research (CIHR) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Ramezani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, M., Abolmaesumi, P., Marble, K. et al. Fusion analysis of functional MRI data for classification of individuals based on patterns of activation. Brain Imaging and Behavior 9, 149–161 (2015). https://doi.org/10.1007/s11682-014-9292-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9292-1

Keywords

Navigation