Skip to main content

Advertisement

Log in

The Nature of Processing Speed Deficits in Traumatic Brain Injury: is Less Brain More?

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The cognitive constructs working memory (WM) and processing speed are fundamental components to general intellectual functioning in humans and highly susceptible to disruption following neurological insult. Much of the work to date examining speeded working memory deficits in clinical samples using functional imaging has demonstrated recruitment of network areas including prefrontal cortex (PFC) and anterior cingulate cortex (ACC). What remains unclear is the nature of this neural recruitment. The goal of this study was to isolate the neural networks distinct from those evident in healthy adults and to determine if reaction time (RT) reliably predicts observable between-group differences. The current data indicate that much of the neural recruitment in TBI during a speeded visual scanning task is positively correlated with RT. These data indicate that recruitment in PFC during tasks of rapid information processing are at least partially attributable to normal recruitment of PFC support resources during slowed task processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Fixed-effects analyses were conducted in SPM5 comparing the TBI subsamples (n = 6, n = 6) using FDR, p < .05 and no differences were noted. When using a liberal threshold to increase sensitivity to possible differences (p < .001, uncorrected, no cluster threshold), this analysis revealed only small differences between TBI subgroups including clusters in: 1) left middle frontal gyrus (BA9) at −34 42 34 (cluster extent 2 voxels), and right supplementary motor cortex (BA 8) at 32 32 48 (cluster extent 67 voxels), and a cluster of 17 voxels in the left medial inferior parietal lobule (BA 31) at −2 −54 32. These subtle differences do not account for the between-group differences observed here when comparing TBI and HC samples.

References

  • Ashburner, J., Neelin, P., Collins, D. L., Evans, A., & Friston, K. (1997). Incorporating prior knowledge into image registration. Neuroimage, 6(4), 344–352.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, V. A., Welch, J. L., & Dick, D. J. (1989). Visuospatial working memory in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 52(11), 1228–1235.

    Article  CAS  Google Scholar 

  • Brandt, J. (1991). The Hopkins Verbal Learning Test (HVLT): development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5, 125–142.

    Article  Google Scholar 

  • Bigler, E. D. (2001). Quantitative magnetic resonance imaging in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(2), 117–34.

    Article  CAS  PubMed  Google Scholar 

  • Buki, A., & Povlishock, J. T. (2006). All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir (Wien), 148(2), 181–193. discussion 193–184.

    Article  CAS  Google Scholar 

  • Calhoun, V. D., Stevens, M. C., Pearlson, G. D., & Kiehl, K. A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. NeuroImage, 22(1), 252-257.

    Article  CAS  Google Scholar 

  • Chang, L., Speck, O., Miller, E. N., Braun, J., Jovicich, J., Koch, C., et al. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57(6), 1001–1007.

    CAS  PubMed  Google Scholar 

  • Chang, L., Tomasi, D., Yakupov, R., Lozar, C., Arnold, S., Caparelli, E., et al. (2004). Adaptation of the attention network in human immunodeficiency virus brain injury. Annals of Neurology, 56(2), 259–272.

    Article  PubMed  Google Scholar 

  • Chiaravalloti, N., Hillary, F., Ricker, J., Christodoulou, C., Kalnin, A., Liu, W. C., et al. (2005). Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. Journal of Clinical and Experimental Neuropsychology, 27(1), 33–54.

    Article  PubMed  Google Scholar 

  • Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lange, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 71(2), 161–168.

    Article  CAS  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.

    Article  CAS  PubMed  Google Scholar 

  • Collette, F., Van der Linden, M., Bechet, S., & Salmon, E. (1999). Phonological loop and central executive functioning in Alzheimer’s disease. Neuropsychologia, 37(8), 905–918.

    Article  CAS  PubMed  Google Scholar 

  • Courtney, S. M. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective and Behavioral Neuroscience, 4(4), 501-516.

    Article  Google Scholar 

  • DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of Neurological Sciences, 270(1–2), 28–39.

    Article  Google Scholar 

  • Demaree, H. A., DeLuca, J., Gaudino, E. A., & Diamond, B. J. (1999). Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. Journal of Neurology, Neurosurgery and Psychiatry, 67(5), 661–663.

    Article  CAS  Google Scholar 

  • Ernst, T., Chang, L., Jovicich, J., Ames, N., & Arnold, S. (2002). Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 59(9), 1343–1349.

    CAS  PubMed  Google Scholar 

  • Ernst, T., Chang, L., & Arnold, S. (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage, 19(4), 1686–1693.

    Article  CAS  PubMed  Google Scholar 

  • Forn, C., Barros-Loscertales, A., Escudero, J., Belloch, V., Campos, S., Parcet, M. A., et al. (2006). Cortical reorganization during PASAT task in MS patients with preserved working memory functions. Neuroimage, 31(2), 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Forn, C., Barros-Loscertales, A., Escudero, J., Benlloch, V., Campos, S., Parcet, M. A., et al. (2007). Compensatory activations in patients with multiple sclerosis during preserved performance on the auditory N-back task. Human Brain Mapping, 28(5), 424–430.

    Article  PubMed  Google Scholar 

  • Fujiwara, E., Schwartz, M. L., Gao, F., Black, S. E., & Levine, B. (2008). Ventral frontal cortex functions and quantified MRI in traumatic brain injury. Neuropsychologia, 46(2), 461–474.

    Article  PubMed  Google Scholar 

  • Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123(Pt 7), 1293–1326.

    Article  PubMed  Google Scholar 

  • Genova, H. M., Hillary, F. G., Wylie, G., Rympa, B., & DeLuca, J. (2009). An examination of processing speed impairments in multiple sclerosis using fMRI. Journal of the International Neuropsychological Society.

  • Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14(4), 526–534.

    Article  PubMed  Google Scholar 

  • Hillary, F. G., & Biswal, B. (2007). The influence of neuropathology on the FMRI signal: a measurement of brain or vein? Clinical Neuropsychologist, 21(1), 58–72.

    Article  CAS  PubMed  Google Scholar 

  • Hillary, F. G., Chiaravalloti, N. D., Ricker, J. H., Steffener, J., Bly, B. M., Lange, G., et al. (2003). An investigation of working memory rehearsal in multiple sclerosis using fMRI. Journal of Clinical and Experimental Neuropsychology, 25(7), 965–978.

    Article  CAS  PubMed  Google Scholar 

  • Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27(11), 837–847.

    Article  PubMed  Google Scholar 

  • Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica (Amst), 86(2–3), 199–225.

    Article  CAS  Google Scholar 

  • Kim, Y. H., Yoo, W. K., Ko, M. H., Park, C. H., Kim, S. T., & Na, D. L. (2009). Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabilitation Neural Repair, 23(4), 468–77.

    Article  PubMed  Google Scholar 

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–31.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., Kovacevic, N., Nica, E. I., Cheung, G., Gao, F., Schwartz, M. L., et al. (2008). The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology, 70(10), 771–778.

    Article  CAS  PubMed  Google Scholar 

  • Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 21(3), 858–867.

    Article  PubMed  Google Scholar 

  • Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery and Psychiatry, 78(2), 168–173.

    Article  CAS  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.

    CAS  PubMed  Google Scholar 

  • McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14(5), 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  • McDowell, S., Whyte, J., & D'Esposito, M. (1997). Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm. Neuropsychologia, 35(10), 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  • Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V., & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 1343–5.

    Article  PubMed  Google Scholar 

  • Morris, R. G., & Baddeley, A. D. (1988). Primary and working memory functioning in alzheimer-type dementia. Journal of Clinical and Experimental Neuropsychology, 10(2), 279–296.

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky, S. H., Schafer, J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., et al. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Brain Research Cognitive Brain Research, 17(2), 419–430.

    Article  PubMed  Google Scholar 

  • Newsome, M. R., Scheibel, R. S., Steinberg, J. L., Troyanskaya, M., Sharma, R. G., Rauch, R. A., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95–111.

    Article  PubMed  Google Scholar 

  • Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349(6304), 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Penner, I. K., Rausch, M., Kappos, L., Opwis, K., & Radü, E. W. (2003). Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. Journal of Neurology, 250(4), 461–472.

    Article  PubMed  Google Scholar 

  • Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741.

    Article  PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8(2–3), 102–8.

    Article  CAS  PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (2002). Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase, 8(5), 345–54.

    Article  PubMed  Google Scholar 

  • Rao, S. M., Leo, G. J., & St Aubin-Faubert, P. (1989a). On the nature of memory disturbance in multiple sclerosis. Journal of Clinical Experimental Neuropsychology, 11(5), 699–712.

    Article  CAS  Google Scholar 

  • Rao, S. M., St Aubin-Faubert, P., & Leo, G. J. (1989b). Information processing speed in patients with multiple sclerosis. Journal of Clinical Experimental Neuropsychology, 11(4), 471–477.

    Article  CAS  Google Scholar 

  • Reitan, R. M. (1958). The relation of the trail-making test (TMT) to organic brain injury. Journal of Consulting Psychology, 19(5), 393–394.

    Article  Google Scholar 

  • Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.

    PubMed  Google Scholar 

  • Rypma, B., & D'Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage, 9(2), 216–226.

    Article  CAS  PubMed  Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., & Gabrieli, J. D. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.

    Article  CAS  PubMed  Google Scholar 

  • Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731.

    Article  PubMed  Google Scholar 

  • Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. Neuroimage, 33(3), 969–979.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A. (1992). Working-memory mediation of adult age differences in integrative reasoning. Memory & Cognition, 20(4), 413–423.

    CAS  Google Scholar 

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.

    Article  CAS  PubMed  Google Scholar 

  • Salthouse, T. A., & Coon, V. E. (1993). Influence of task-specific processing speed on age differences in memory. Journal of Gerontology, 48(5), 245–255.

    Google Scholar 

  • Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., et al. (2008a). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage, 43(3), 421–429.

    Article  Google Scholar 

  • Sanchez-Carrion, R., Gomez, P. V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., et al. (2008b). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–494.

    Article  Google Scholar 

  • Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., et al. (1991). Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Archives of General Psychiatry, 48(7), 618–624.

    CAS  PubMed  Google Scholar 

  • Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., Stafiniak, P., et al. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51(2), 124–131.

    CAS  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation Neural Repair, 21(1), 36–45.

    Article  PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447-1461.

    Article  PubMed  Google Scholar 

  • Smith, A. (1973). Symbol digit modalities task. Los Angeles: Western Psychological Services.

    Google Scholar 

  • Smith, A. (1997). Symbol digit modalities test (SDMT)—oral version. Los Angeles: The Psychological Corporation.

    Google Scholar 

  • Stuss, D. T., Ely, P., Hugenholtz, H., Richard, M. T., LaRochelle, S., Poirier, C. A., et al. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery, 17(1), 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.

    Article  PubMed  Google Scholar 

  • Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Trenerry, M. R., Crosson, B., DeBoe, J., & Leber, W. R. (1990). The Visual Search and Attention Test (VSAT). Odessa, Fla: Psychological Assessment Resources.

    Google Scholar 

  • Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale – Third Edition. Administration and Scoring Manual. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wu, H. M., Huang, S. C., Hattori, N., Glenn, T. C., Vespa, P. M., Hovda, D. A., et al. (2004). Subcortical white matter metabolic changes remote from focal hemorrhagic lesions suggest diffuse injury after human traumatic brain injury. Neurosurgery, 55(6), 1306–1315.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Hillary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables S1, S2

Group data presenting “peak” activation for canonical HRF analysis illustrated in Fig. 1 a,b. Note: “Region” indicates peak activation for Brodmann’s areas. For Regions where more than one peak was present in any specific Brodmann’s area and gyrus, only the most significant peak is reported. (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillary, F.G., Genova, H.M., Medaglia, J.D. et al. The Nature of Processing Speed Deficits in Traumatic Brain Injury: is Less Brain More?. Brain Imaging and Behavior 4, 141–154 (2010). https://doi.org/10.1007/s11682-010-9094-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-010-9094-z

Keywords

Navigation