Skip to main content
Log in

Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid inhibits growth of human lung cancer A549 cells by arresting cell cycle and triggering apoptosis

  • Original Article
  • Lung Cancer
  • Published:
Chinese Journal of Cancer Research

Abstract

Objective

To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), a compound isolated from Pteris semipinnata L (PsL), in human lung cancer A549 cells.

Methods

A549 cells were treated with 5F (0–80 μg/ml) for different time periods. Cytotoxicity was examined using a MTT method. Cell cycle was examined using propidium iodide staining. Apoptosis was examined using Hoechst 33258 staining, enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis. Expression of representative apoptosis-related proteins was evaluated by Western blot analysis. Reactive oxygen species (ROS) level was measured using standard protocols. Potential interaction of 5F with cisplatin was also examined.

Results

5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. 5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase. Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis. The expression of p21 was increased. 5F exposure also increased Bax expression, release of cytochrome c and apoptosis inducing factor (AIF), and activation of caspase-3. 5F significantly sensitized the cells to cisplatin toxicity. Interestingly, treatment with 5F did not increase ROS, but reduced ROS production induced by cisplatin.

Conclusion

5F could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang P, Allen MS, Aubry MC, et al. Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 2005; 128:452–462.

    Article  PubMed  Google Scholar 

  2. Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 2006; 24:4539–4544.

    Article  PubMed  Google Scholar 

  3. Erridge SC, Møller H, Price A, et al. International comparisons of survival from lung cancer: pitfalls and warnings. Nat Clin Pract Oncol 2007; 4:570–577.

    Article  PubMed  Google Scholar 

  4. Li J, Liang N, Mo L, et al. Comparison of the cytotoxicity of five constituents from Pteris semipinnata L. in vitro and the analysis of their structure-activity relationships. Acta Pharmaceutica Sinica 1998; 33:641–644.

    PubMed  CAS  Google Scholar 

  5. Lu YN, Chen G, Wu KF, et al. Determination of 5F in Pteris semipinnata L injection by HPLC. Xin Yao Cai (in Chinese) 2008; 23:2048–2058.

    Google Scholar 

  6. Gong XL, Chen ZH, Lu YN, et al. Purification of the antitumor compound 5F from Pteris semipinnata L. Zhong Cheng Yao (in Chinese) 2008; 30:1286–1289.

    CAS  Google Scholar 

  7. Chen GG, Liang NC, Lee JF, et al. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis 2004; 9:619–627.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Z, Ng EK, Liang NC, et al. Cell death induced by Pteris semipinnata L. is associated with p53 and oxidant stress in gastric cancer cells. FEBS Lett 2005; 579:1477–1487.

    Article  PubMed  CAS  Google Scholar 

  9. Liu ZM, Chen GG, Vlantis AC, et al. Cell death induced by ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid in anaplastic thyroid carcinoma cells is via a mitochondrial-mediated pathway. Apoptosis 2005; 10:1345–1356.

    Article  PubMed  CAS  Google Scholar 

  10. Li L, Liu Y, Lu YN, et al. Apoptosis effect and mechanism of 5F from Pteris semipinnata on HepG2 cells. Zhong Yao Cai (in Chinese) 2010; 33:77–80.

    CAS  Google Scholar 

  11. Vlantis AC, Lo CS, Chen GG, et al. Induction of laryngeal cancer cell death by Ent-11-hydroxy-15-oxo-kaur-16-en-19-oic acid. Head Neck 2010; 32:1506–1518.

    Article  PubMed  Google Scholar 

  12. Fuse E, Kuwabara T, Sparreboom A, et al. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J Clin Pharmacol 2005; 45:394–403.

    Article  PubMed  CAS  Google Scholar 

  13. Edelman MJ, Bauer KS Jr, Wu S, et al. Phase I and pharmacokinetic study of 7-hydroxystaurosporine and carboplatin in advanced solid tumors. Clin Cancer Res 2007; 13:2667–2674.

    Article  PubMed  CAS  Google Scholar 

  14. Li MY, Leung J, Kong AW, et al. Anticancer efficacy of 5F in NNK-induced lung cancer development of A/J mice and human lung cancer cells. J Mol Med 2010; 88:1265–1276.

    Article  PubMed  CAS  Google Scholar 

  15. Deng YF, Liang NC. Study on extraction and separation of diterpenoids from Pteris semipinnata. Zhong Guo Yao Li Xue Za Zhi (in Chinese) 2004; 39:42–44.

    Google Scholar 

  16. Tian Z, Shen J, Moseman AP, et al. Dulxanthone A induces cell cycle arrest and apoptosis via up-regulation of p53 through mitochondrial pathway in HepG2 cells. Int J Cancer 2008; 122:31–38.

    Article  PubMed  CAS  Google Scholar 

  17. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–254.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang M, Wei Q, Pabla N, et al. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 2007; 73:1499–1510.

    Article  PubMed  CAS  Google Scholar 

  19. Kim YH, Kim YW, Oh YJ, et al. Protective effect of the ethanol extract of the roots of Brassica rapa on cisplatin-induced nephrotoxicity in LLC-PK1 cells and rats. Biol Pharm Bull 2006; 29:2436–2441.

    Article  PubMed  CAS  Google Scholar 

  20. Satoh M, Kashihara N, Fujimoto S, et al. A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther 2003; 305:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  21. Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 1995; 17:471–480.

    Article  PubMed  CAS  Google Scholar 

  22. Gautier J, Solomon MJ, Booher RN, et al. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 1991; 67:197–211.

    Article  PubMed  CAS  Google Scholar 

  23. Sherr CJ. Cancer cell cycles. Science 1996; 274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  24. Kroemer G. Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 2003; 304:433–435.

    Article  PubMed  CAS  Google Scholar 

  25. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  26. Senderowicz AM. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 2004; 16:670–678.

    Article  PubMed  CAS  Google Scholar 

  27. De Siervi A, Marinissen M, Diggs J, et al. Transcriptional activation of p21(waf1/cip1) by alkylphospholipids: role of the mitogen-activated protein kinase pathway in the transactivation of the human p21 (waf1/cip1) promoter by Sp1. Cancer Res 2004; 64:743–750.

    Article  PubMed  Google Scholar 

  28. Rigberg DA, Blinman TA, Kim FS, et al. Antisense blockade of p21/WAF1 decreases radiation-induced G2 arrest in esophageal squamous cell carcinoma. J Surg Res 1999; 81:6–10.

    Article  PubMed  CAS  Google Scholar 

  29. Ando T, Kawabe T, Ohara H, et al. Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 2001; 276:42971–42977.

    Article  PubMed  CAS  Google Scholar 

  30. Chu G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 1994; 269:787–790.

    PubMed  CAS  Google Scholar 

  31. Malugin A, Kopecková P, Kopecek J. HPMA copolymer-bound doxorubicin induces apoptosis in ovarian carcinoma cells by the disruption of mitochondrial function. Mol Pharm 2006; 3:351–361.

    Article  PubMed  CAS  Google Scholar 

  32. Yim EK, Lee KH, Bae JS, et al. Proteomic analysis of antiproliferative effects by treatment of 5-fluorouracil in cervical cancer cells. DNA Cell Biol 2004; 23:769–776.

    Article  PubMed  CAS  Google Scholar 

  33. Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. Oncol Rep 2003; 10:1663–1682.

    PubMed  CAS  Google Scholar 

  34. Sastre J, Pallardó FV, Viña J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000; 49:427–435.

    Article  PubMed  CAS  Google Scholar 

  35. Carmody RJ, Cotter TG. Signalling apoptosis: a radical approach. Redox Rep 2001; 6:77–90.

    Article  PubMed  CAS  Google Scholar 

  36. Pelicano H, Feng L, Zhou Y, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 2003; 278:37832–37839.

    Article  PubMed  CAS  Google Scholar 

  37. Laurent A, Nicco C, Chéreau C, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005; 65:948–956.

    PubMed  CAS  Google Scholar 

  38. Gupta A, Rosenberger SF, Bowden GT. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 1999; 20:2063–2073.

    Article  PubMed  CAS  Google Scholar 

  39. Li L, Wu KF, Liu Y, et al. Ros is not involved in induction of cell death by induction of cancer cell death by Ent-11-hydroxy-15-oxo-kaur-16-en-19-oic acid in HepG2 cells. Zhong Guo Zhong Yao Za Zhi (in Chinese) 2010; 35:1287–1291.

    CAS  Google Scholar 

  40. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009; 61:223–242.

    Article  PubMed  CAS  Google Scholar 

  41. Rybak LP, Whitworth CA, Mukherjea D, et al. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 2007; 226:157–167.

    Article  PubMed  CAS  Google Scholar 

  42. van den Berg JH, Beijnen JH, Balm AJ, et al. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat Rev 2006; 32:390–397.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Nian-ci Liang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 3987099), the Guangdong-Hong Kong Technology Cooperation Funding Scheme (No. GHP/022/06) and the Research Committee, Guangdong Medical College (No. XB0601).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chen, G.G., Lu, Yn. et al. Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid inhibits growth of human lung cancer A549 cells by arresting cell cycle and triggering apoptosis. Chin. J. Cancer Res. 24, 109–115 (2012). https://doi.org/10.1007/s11670-012-0109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11670-012-0109-8

Key words

Navigation