Skip to main content
Log in

A Phase-Field Model and Simulation of Kinetically Asymmetric Ternary Conversion-Reconversion Transformation in Battery Electrodes

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Electrochemical processes in high-energy electrode materials often involve diffusion of multiple species and solid-state phase transformations. Some of these phase transformations involve breaking and rearranging ionic bonds and are referred to as conversion reactions (e.g., the lithium and iron difluoride conversion reaction: 2Li+ + 2e + FeF2 → 2LiF + Fe). The phase transformations during conversion processes are governed by fundamental thermodynamics and kinetics in a similar manner to metallurgical systems. In this work, we developed a phase-field model that tracks atomic fractions of three constituent species to simulate the morphological evolution of different phases. The simulations demonstrate that conversion proceeds via a two-stage process consisting of lithiation and decomposition stages, whereas the reconversion process consists of a single-stage delithiation. This asymmetry in evolution paths of conversion and reconversion is likely responsible for the voltage hysteresis commonly observed during lithiation-delithiation cycling of conversion materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev., 2004, 104(10), p 4271-4301

    Article  Google Scholar 

  2. X. Hua, R. Robert, L.-S. Du, K.M. Wiaderek, M. Leskes, K.W. Chapman, P.J. Chupa, and C.P. Clare, Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery, J. Phys. Chem. C, 2014, 118(28), p 15169-15184

    Article  Google Scholar 

  3. F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R.G. Zhang, L.J. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingharn, C.P. Grey, G.G. Amatucci, Y.M. Zhu, and J. Graetz, Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes, J. Am. Chem. Soc., 2011, 133(46), p 18828-18836

    Article  Google Scholar 

  4. N. Pereira, F. Badway, M. Wartelsky, S. Gunn, and G.G. Amatucci, Iron Oxyfluorides as High Capacity Cathode Materials for Lithium Batteries, J. Electrochem. Soc., 2009, 156(6), p A407-A416

    Article  Google Scholar 

  5. F. Badway, A.N. Mansour, N. Pereira, J.F. Al-Sharab, F. Cosandey, I. Plitz, and G.G. Amatucci, Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices, Chem. Mater., 2007, 19(17), p 4129-4141

    Article  Google Scholar 

  6. F. Wang, S.W. Kim, D.H. Seo, K. Kang, L.P. Wang, D. Su, J.J. Vajo, J. Wang, and J. Graetz, Ternary Metal Fluorides as High-Energy Cathodes with Low Cycling Hysteresis, Nat. Commun., 2015, 6, p 6668

    Article  ADS  Google Scholar 

  7. M. Bervas, A.N. Mansour, W.S. Yoon, J.F. Al-Sharab, F. Badway, F. Cosandey, L.C. Klein, and G.G. Amatucci, Investigation of the Lithiation and Delithiation Conversion Mechanisms of Bismuth Fluoride Nanocomposites, J. Electrochem. Soc., 2006, 153(4), p A799-A808

    Article  Google Scholar 

  8. F. Lin, D. Nordlund, T.C. Weng, Y. Zhu, C.M. Ban, R.M. Richards, and H.L. Xin, Phase Evolution for Conversion Reaction Electrodes in Lithium-Ion Batteries, Nat. Commun., 2014, 5, p 3358

    ADS  Google Scholar 

  9. U. Boesenberg, M.A. Marcus, A.K. Shukla, T. Yi, E. McDermott, P.F. Teh, M. Srinivasan, A. Moewes, and J. Cabana, Asymmetric Pathways in the Electrochemical Conversion Reaction of NiO as Battery Electrode with High Storage Capacity, Sci. Rep., 2014, 4, p 7133

    Article  ADS  Google Scholar 

  10. J.H. Ku, Y.S. Jung, K.T. Lee, C.H. Kim, and S.M. Oh, Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries, J. Electrochem. Soc., 2009, 156(8), p A688-A693

    Article  Google Scholar 

  11. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J.M. Tarascon, Particle Size Effects on the Electrochemical Performance of Copper Oxides Toward Lithium, J. Electrochem. Soc., 2001, 148(4), p A285-A292

    Article  Google Scholar 

  12. R. Adam, D. Wadewitz, W. Gruner, V. Klemm, H. Ehrenberg, and D. Rafaja, Phase and Microstructure Development in the Conversion Type Electrodes for Li-Ion Batteries Based on the Cu-Fe-O System, J. Electrochem. Soc., 2013, 160(9), p A1594-A1603

    Article  Google Scholar 

  13. F. Wang, H.-C. Yu, M.-H. Chen, L.J. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y.M. Zhu, G.G. Amatucci, and J. Graetz, Tracking Lithium Transport and Electrochemical Reactions in Nanoparticles, Nat. Commun., 2012, 3, p 1201

    Article  ADS  Google Scholar 

  14. J.K. Ko, K.M. Wiaderek, N. Pereira, T.L. Kinnibrugh, J.R. Kim, P.J. Chupas, K.W. Chapman, and G.G. Amatucci, Transport, Phase Reactions, and Hysteresis of Iron Fluoride and Oxyfluoride Conversion Electrode Materials for Lithium Batteries, ACS Appl. Mater. Interfaces, 2014, 6(14), p 10858-10869

    Article  Google Scholar 

  15. K.M. Wiaderek, O.J. Borkiewicz, N. Pereira, J. Ilavsky, G.G. Amatucci, P.J. Chupas, and K.W. Chapman, Mesoscale Effects in Electrochemical Conversion: Coupling of Chemistry to Atomic- and Nanoscale Structure in Iron-Based Electrodes, J. Am. Chem. Soc., 2014, 136(17), p 6211-6214

    Article  Google Scholar 

  16. F. Wang, H.-C. Yu, A. Van der Ven, K. Thornton, N. Pereira, Y.M. Zhu, G.G. Amatucci, and J. Graetz, Ionic and Electronic Transport in Metal Fluoride Conversion Electrodes, ECS Trans., 2012, 50(1), p 19-25

    Article  Google Scholar 

  17. R. Folch and M. Plapp, Quantitative Phase-Field Modeling of Two-Phase Growth, Phys. Rev. E, 2005, 72(2), p 011602

    Article  ADS  MathSciNet  Google Scholar 

  18. H.-Y. Chen, H.-C. Yu, J.S. Cronin, J.R. Wilson, S.A. Barnett, and K. Thornton, Simulation of Coarsening in Three-Phase Solid Oxide Fuel Cell Anodes, J. Power Sources, 2011, 196(3), p 1333-1337

    Article  Google Scholar 

  19. H.-C. Yu, H.-Y. Chen, and K. Thornton, Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries, Model. Simul. Mater. Sci. Eng., 2012, 20(7), p 075008

    Article  ADS  Google Scholar 

  20. H.-C. Yu, C. Ling, J. Bhattacharya, J.C. Thomas, K. Thornton, and A. Van der Ven, Designing the Next Generation High Capacity Battery Electrodes, Energy Environ. Sci., 2014, 7(5), p 1760-1768

    Article  Google Scholar 

  21. A.A. Donaldson, D.M. Kirpalani, and A. Macchi, Diffuse Interface Tracking of Immiscible Fluids: Improving Phase Continuity Through Free Energy Density Selection, Int. J. Multiphase Flow, 2011, 37(7), p 777-787

    Article  Google Scholar 

  22. D.B. Jenkins, Chemical Thernodynamics at a Glance, 1st ed., Blackwell Publishing Inc., Malden, MA, 2008, p 78

    Book  Google Scholar 

  23. A. Van der Ven, H.-C. Yu, G. Ceder, and K. Thornton, Vacancy Mediated Substitutional Diffusion in Binary Crystalline Solids, Prog. Mater Sci., 2010, 55(2), p 61-105

    Article  Google Scholar 

  24. K.E. Teigen, P. Song, J. Lowengrub, and A. Voigt, A Diffuse-Interface Method for Two-Phase Flows with Soluble Surfactants, J. Comput. Phys., 2011, 230(2), p 375-393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999, p 138

    MATH  Google Scholar 

  26. S. Osher and R. Fedkiw, Level Set Methods and Dynamics Implicit Surfaces, Springer, New York, 2003, p 54

    Book  MATH  Google Scholar 

  27. C.-L. Park, P.W. Voorhees, and K. Thornton, Application of the Level-Set Method to the Analysis of an Evolving Microstructure, Comput. Mater. Sci., 2014, 85, p 46-58

    Article  Google Scholar 

  28. T.G. Stoebe and R.A. Huggins, Measurement of Ionic Diffusion in Lithium Fluoride by Nuclear Magnetic Resonance Techniques, J. Mater. Sci., 1966, 1(2), p 117-126

    Article  ADS  Google Scholar 

  29. G.G. Amatucci and N. Pereira, Fluoride Based Electrode Materials for Advanced Energy Storage Devices, J. Fluor. Chem., 2007, 128(4), p 243-262

    Article  Google Scholar 

  30. R.E. Doe, K.A. Persson, Y.S. Meng, and G. Ceder, First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium, Chem. Mater., 2008, 20(16), p 5274-5283

    Article  Google Scholar 

  31. V. Bodenez, L. Dupont, M. Morcrette, C. Surcin, D.W. Murphy, and J.M. Tarascon, Copper Extrusion/Reinjection in Cu-Based Thiospinels by Electrochemical and Chemical Routes, Chem. Mater., 2006, 18(18), p 4278-4287

    Article  Google Scholar 

  32. H.-C. Yu, A. Van der Ven, and K. Thornton, Simulations of the Kirkendall-Effect-Induced Deformation of Thermodynamically Ideal Binary Diffusion Couples with General Geometries, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2012, 43A(10), p 3481-3500

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This work is supported by the NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Numbers DE-SC0001294 and DE-SC0012583. Computational resources were provided by the Extreme Science and Engineering Discovery Environment (XSEDE) (Allocation No. TG-DMR110007), which is supported by National Science Foundation Grant Number OCI-1053575, and also provided by the University of Michigan Advanced Research Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyo Thornton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HC., Wang, F., Amatucci, G.G. et al. A Phase-Field Model and Simulation of Kinetically Asymmetric Ternary Conversion-Reconversion Transformation in Battery Electrodes. J. Phase Equilib. Diffus. 37, 86–99 (2016). https://doi.org/10.1007/s11669-015-0440-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0440-0

Keywords

Navigation