Skip to main content
Log in

Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager’s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determined by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. The magnitude of \(\tilde{D}_{ZnZn}^{Mg}\) ternary interdiffusion coefficients was greater than that of \(\tilde{D}_{AlAl}^{Mg} ,\) the magnitude of \(\tilde{D}_{ZnZn}^{Al}\) ternary interdiffusion coefficients was greater than that of \(\tilde{D}_{MgMg}^{Al}\), and the magnitude of \(\tilde{D}_{MgMg}^{Zn}\) was greater than that of \(\tilde{D}_{AlAl}^{Zn}\). Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the \(\tilde{D}_{MgZn}^{Al}\) and \(\tilde{D}_{AlZn}^{Mg}\) ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to \(\tilde{D}_{MgMg}^{Al}\) and \(\tilde{D}_{AlAl}^{Mg}\), respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive \(\tilde{D}_{MgAl}^{Zn}\) and \(\tilde{D}_{AlMg}^{Zn}\) interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Easton et al., Magnesium Alloy Applications in Automotive Structures, JOM, 2008, 60(11), p 57-62

    Article  Google Scholar 

  2. H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications, Springer, New York, 2006

    Google Scholar 

  3. S.R. Agnew and J.F. Nie, Preface to the Viewpoint Set On: The Current State of Magnesium Alloy Science and Technology, Scr. Mater., 2010, 63, p 671

    Article  Google Scholar 

  4. A.A. Luo et al., Magnesium Alloy Development for Automotive Applications, Mater. Sci. Forum, 2012, 706(1), p 69

    Article  Google Scholar 

  5. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., 2013, 61(3), p 818-843

    Article  Google Scholar 

  6. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloys, 2013, 1(1), p 2-22

    Article  Google Scholar 

  7. S. Brennan et al., Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3, Metall. Mater. Trans. A, 2012, 43(11), p 4043-4052

    Article  MathSciNet  Google Scholar 

  8. S. Brennan et al., Diffusion Couple Investigation of the Mg-Zn System, in Magnesium Technology 2012, Wiley, Hoboken, 2012, p 323-327

    Google Scholar 

  9. S. Brennan, K. Bermudez, and Y.H. Sohn, Intermetallic Growth and Interdiffusion in the Mg-Nd System, 2012

  10. S. Brennan et al., Aluminum Impurity Diffusion in Magnesium, J. Phase Equilib. Diffus., 2012, 33, p 121-125

    Article  Google Scholar 

  11. J. Čermák and I. Stoukal, Diffusion of 65Zn in Mg and in Mg-xAl solid solutions, Phys. Status Solidi A, 2006, 203, p 2386-2392

    Article  ADS  Google Scholar 

  12. J. Combronde and G. Brebec, Heterodiffusion de Ag, Cd, In, Sn et Sb dans le Magnesium, Acta Metall., 1972, 20(1), p 37-44

    Article  Google Scholar 

  13. S. Das et al., Anisotropic Diffusion Behavior of Al in Mg: Diffusion Couple Study Using Mg Single Crystal, Metall. Mater. Trans. A, 2013, 44(6), p 2539-2547

    Article  Google Scholar 

  14. S.K. Das et al., Grain Boundary Diffusion of Al in Mg, Scr. Mater., 2014, 80, p 41-44

    Article  Google Scholar 

  15. S.K. Das et al., Thermodynamic Modeling and Diffusion Kinetic Experiments of Binary Mg-Gd and Mg-Y Systems, Acta Mater., 2014, 71, p 12

    Article  Google Scholar 

  16. S.K. Das et al., Investigation of Anisotropic Diffusion Behavior of Zn in hcp Mg and Interdiffusion Coefficients of Intermediate Phases in the Mg-Zn System, Calphad, 2013, 42, p 51

    Article  Google Scholar 

  17. S.I. Fujikawa, Tracer Diffusion of Magnesium in Pseudo-Binary Al-Mg2Si Alloys, Defect and Diffusion Forum/Journal, Vol 143, 1997, p 403-408

  18. S.I. Fujikawa, Y. Takada, Interdiffusion Between Aluminum and Al-Mg Alloys, Defect and Diffusion Forum/Journal, Vol 143, 1997, p 409-414

  19. Y. Funamizu and K. Watanabe, Interdiffusion in the Al-Mg System, Trans. Jpn. Inst. Metals, 1972, 13(4), p 278-283

    Article  Google Scholar 

  20. S. Ganeshan, L.G. Hector, Jr., and Z.-K. Liu, First-Principles Calculations of Impurity Diffusion Coeefficients in Dilute Mg Alloys Using the 8-Frequency Model, Acta Mater., 2011, 59, p 3214-3228

    Article  Google Scholar 

  21. L. Huber et al., Ab Initio Calculations of Rare-Earth Diffusion in Magnesium, Phys. Rev. B, 2012, 85(14), p 1-7

    Article  Google Scholar 

  22. C. Kammerer, et al., Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples, Magnesium Technology 2014. Wiley, 2014, p 505-509

  23. C. Kammerer, et al., Al and Zn Impurity Diffusion in Binary and Ternary Magnesium Solid-Solutions, Magnesium Technology 2014. Wiley, 2014, p 407-411

  24. C.C. Kammerer et al., Interdiffusion and Impurity Diffusion in Polycrystalline Mg Solid Solution with Al or Zn, J. Alloys Compd., 2014, 617, p 968-974

    Article  Google Scholar 

  25. K. Lal, Diffusion of Some Elements in Magnesium, CEA Report R-3136. Saclay, 1967, p 54

  26. A. Mostafa and M. Medraj, On the atomic interdiffusion in Mg-{Ce, Nd, Zn} and Zn-{Ce, Nd} binary systems, J. Mater. Res., 2014, 29(13), p 1463-1479

    Article  ADS  Google Scholar 

  27. G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals, Elsevier, London, 2009

    Google Scholar 

  28. Y. Sohn, 13—Diffusion in Metals, Smithells Metals Reference Book, 8th ed., W.F.G.C. Totemeier, Ed., Butterworth-Heinemann, Oxford, 2004, p 1-120

  29. D. Beke et al., Diffusion of 65Zn in dilute AlZn, AlMg, AlZnMg and AlZnFe Alloys, Acta Metall., 1977, 25(5), p 539-550

    Article  Google Scholar 

  30. T. Takahashi et al., Quaternary Diffusion in the Alpha Solid Solutions of Al-Zn-Mg-Cu Alloys, Mater. Trans. JIM, 1999, 40(9), p 997-1004

    Article  Google Scholar 

  31. T. Takahashi, Y. Minamino, and T. Yamane, Quaternary Diffusion in 7000 Aluminum Alloys, Mater. Trans., 2002, 43(2), p 232-238

    Article  Google Scholar 

  32. J. Yao et al., Diffusional Mobility for fcc Phase of Al-Mg-Zn System and Its Applications, Calphad, 2008, 32(3), p 602-607

    Article  Google Scholar 

  33. J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems, Can. J. Phys., 1957, 35, p 435-440

    Article  ADS  Google Scholar 

  34. J.S. Kirkaldy, Diffusion in Multicomponent Metallic Systems: I. Phenomenological Theory for Substitutional Solid Solution Alloys, Can. J. Phys., 1958, 36(7), p 899-906

    Article  ADS  Google Scholar 

  35. L. Onsager, Reciprocal Relations in Irreversible Processes I, Phys. Rev., 1931, 37, p 405-426

    Article  ADS  Google Scholar 

  36. L. Onsager, Reciprocal Relations in Irreversible Processes II, Phys. Rev., 1931, 38, p 2265-2279

    Article  ADS  MATH  Google Scholar 

  37. T.O. Ziebold and R.E. Ogilvie, Quantitative Analysis with the Electron Micro-Analyzer, Anal. Chem., 1963, 35, p 621-627

    Article  Google Scholar 

  38. L. Boltzmann, Ann. Phys. Chem. Wied., 1894, 53, p 959

    Article  ADS  Google Scholar 

  39. C. Matano, On the Relation Between the Diffusion-Coefficients and Concentrations of Solid Metals (The Nickel-Copper System), Jpn. J. Phys., 1933, 8, p 109

    Google Scholar 

  40. D.P. Whittle and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Metall., 1974, 8, p 883-884

    Article  Google Scholar 

  41. M. Dayananda and C. Kim, Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples, Metall. Trans. Part A, 1979, 10(9), p 1333

    Article  ADS  Google Scholar 

  42. T.O. Ziebold and R.E. Ogilvie, Ternary Diffusion in Copper-Silver-Gold Alloys, Trans. TMS-AIME, 1967, 239, p 942-953

    Google Scholar 

  43. M.T. Malik and D. Bergner, Methods for Determination of Effective Diffusion Coefficients in Ternary Alloys, Cryst. Res. Technol., 1985, 20, p 1283-1300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Sohn.

Additional information

This article is an invited paper selected from presentations at the Hume-Rothery Award Symposium on “Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering,” during TMS 2015, held March 15-19, 2015, in Orlando, Fla., and has been expanded from the original presentation. This symposium was held in honor of the 2015 Hume-Rothery award recipient, William Boettinger, for outstanding contributions to thermodynamics and kinetics of metallurgical systems and their application to the understanding of alloy microstructures and the relationship to processing conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammerer, C.C., Kulkarni, N.S., Warmack, B. et al. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc. J. Phase Equilib. Diffus. 37, 65–74 (2016). https://doi.org/10.1007/s11669-015-0438-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0438-7

Keywords

Navigation