Skip to main content
Log in

Phase Equilibria, Crystal Chemistry and Physical Properties of Au-Ba-Ge Clathrates

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In the Au-Ba-Ge system the clathrate type I solid solution, Ba8Au x Ge46−xy y , extends at 800 °C from binary Ba8Ge433 (□ is a vacancy) to Ba8Au6Ge40. For the clathrate phase (1 ≤ x ≤ 6) cubic primitive symmetry (space group \( Pm{\bar{{3}}}n \)) was confirmed by x-ray powder diffraction assisted by x-ray single crystal analyses of Ba8Au4.6Ge40.31.1. The lattice parameters of the solid solution show an almost linear increase with increasing gold content. Site preference from x-ray refinement shows that gold atoms preferably occupy the 6d site in random mixture with Ge and vacancies, which vanish at the solubility limit. Clathrate type ΙX (Ba6Ge25 type) has a maximum solubility of 2.7 at.% gold at 800 °C. Phase equlilibria at 800 °C are characterized by four ternary phases in the investigated region up to 33.3 at.% barium. The homogeneity range of Ba(Au1−x Ge x )2 (AlB2-type) and BaAu1+x Ge3−x has been established: Ba(Au1−x Ge x )2 extends from BaAu0.5Ge1.5 to BaAu0.9Ge1.1 and BaAu1+x Ge3−x from BaAu1.1Ge2.9 (BaNiSn3-type) to BaAu2.7Ge1.3 (Ce(Ni,Sb)4-type). The crystal structures of two phases in the gold-rich part have been determined from single crystal x-ray data and were found to form new structure types: BaAu3Ge with BaAu3Ge-type (space group P4/nmm, a = 0.6459(2), c = 0.5487(2) nm) and BaAu5+x Ge2−x (x = 0, BaAu5Si2-type, space group Pnma, a = 0.8981(2), b = 0.7106(2) and c = 1.0363(2) nm), the latter revealing with increasing gold content a closely related derivative structure type (BaAu5.3Ge1.7, \( a = a_{{{\text{BaAu}}_{5} {\text{Si}}_{2} }} ,\;b = b_{{{\text{BaAu}}_{5} {\text{Si}}_{2} }} ,\;c = 2c_{{{\text{BaAu}}_{5} {\text{Si}}{}_{2}}} \)). Transport properties and particularly the thermoelectric behavior were studied for Ba8Au6Ge40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. During preparation of these manuscript, we learned to know a Ref 23 reporting a split position (25% occupation of Ba2 in an off center position at a 24k site) in Ba8Au5.3Ge40.7. However our Difference Fourier map and SC refinement for Ba8Au4.5Ge40.31.1 did not show any off-centering in this position.

References

  1. G. Cordier and P. Woll, Neue ternäre intermetallische Verbindungen mit Clathratstruktur: Ba8(T,Si)6Si40 und Ba8(T,Ge)6Ge40 mit T = Ni, Pd, Pt, Cu, Ag, Au, J. Less-Common. Met., 1991, 169, p 291-302, in German

    Google Scholar 

  2. S. Johnsen, B. Thomsen, M. Christensen, G.K.H. Madsen, M. Nygren, and B. Iversen, An Exploration of Noble Metal Substitution in Germanium Based Clathrates, ICT, 2007, p 219

  3. H. Anno, M. Hokazone, H. Takakura, and K. Matsubara, Thermoelectric Properties of Ba8Au x Ge46−x Clathrate Compounds, ICT, 2005, p 102

  4. R.F.W. Herrmann, K. Tanigaki, T. Kawaguchi, S. Kuroshima, and O. Zhou, Electronic Structure of Si and Ge Gold-Doped clathrates, Phys. Rev. B, 1999 60(19), p 13245-13248

    Google Scholar 

  5. W. Carrillo-Cabrera, S. Budnyk, Y. Prots, and Y. Grin, Ba8Ge43 revisited: a 2a′ × 2a′ × 2a′ Superstructure of the Clathrate-I, Type with Full Vacancy Ordering, Z. Anorg. Allg. Chem., 2004, 630, p 7226

    Google Scholar 

  6. W. Carrillo-Cabrera, J. Curda, K. Peters, S. Paschen, M. Baenitz, Yu. Grin, and H.G. von Schnering, Crystal Structure of the Defect Clathrate-I, Ba8Ge43, Z. Kristallogr. NCS, 2000, 215, p 321

    Google Scholar 

  7. N.L. Okamoto, M.W. Oh, T. Nishii, K. Tanaka, and H. Inui, Crystal Structure and Thermoelectric Properties of the Type-I, Clathrate Compound Ba8Ge43 with an Ordered Arrangement of Ge Vacancies, J. Appl. Phys., 2006, 99, p 033513

    Article  ADS  Google Scholar 

  8. N. May and H. Schäfer, Neue Verbindungen im ThCr2Si2-Typ, Z. Naturforsch., 1972, 27B, p 864, in German

    Google Scholar 

  9. N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldarar, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, M. Rotter, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, Ternary Clathrates Ba-Zn-Ge: Phase Equilibria, Crystal Chemistry and Physical Properties, J. Phys.: Condens. Matter, 2007, 19, p 216223

    Article  ADS  Google Scholar 

  10. N. Melnychenko-Koblyuk, A. Grytsiv, G. Giester, E. Bauer, P. Rogl, M. Rotter, L. Lackner, L. Fornasari, and F. Marabelli, Structure and Physical Properties of Type-I, Clathrate Solid-Solution Ba8Pt x Ge46−xy y (□ = vacancy), Phys. Rev. B, 2007, 76, p 195124

    Article  ADS  Google Scholar 

  11. N. Melnychenko-Koblyuk, A. Grytsiv, G. Giester, St. Berger, H. Kaldarar, H. Michor, F. Röhrbacher, E. Royanian, E. Bauer, P. Rogl, M. Rotter, and H. Schmid, Ternary Clathrates Ba Cd Ge: Phase Equilibria, Crystal Chemistry and Physical Properties, J. Phys.: Condens. Matter, 2007, 19, p 046203

    Article  ADS  Google Scholar 

  12. I. Zeiringer, M.X. Chen, I. Bednar, E. Royanian, E. Bauer, R. Podloucky, A. Grytsiv, P. Rogl, and H. Effenberger, Phase Equilibria, Crystal Chemistry, Electronic Structure and Physical Properties of Ag-Ba-Ge Clathrates, Acta. Mater., 2011, 59, p 2368-2384

    Article  Google Scholar 

  13. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, and H. Schmid, The Clathrate Ba8Cu x Ge46−xy y : Phase Equilibria and Crystal Structure, J. Solid State Chem., 2009, 182, p 1754

    Article  ADS  Google Scholar 

  14. G. Bruzzone and G.B. Bonino, Alcuni composti intermetrallici M X2 formati dal Ca, Sr e Ba, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, 1970, 48, p 235-241, in Italian

  15. I. Zeiringer, E. Bauer, A. Grytsiv, P. Rogl, and H. Effenberger, The Ternary System Au-Ba-Si: Clathrate Compounds and Physical Properties, Phase Equilibria and Crystal Structures; to be published

  16. W. Bazela, The Influence of the Crystal Structure on the Magnetic Ordering in RT2X2 and RTX3 Compounds, J. Alloys Compd., 2007, 442, p 132-135

    Article  Google Scholar 

  17. V.K. Pecharskii, O.I. Bodak, and Yu.V. Pankevich, The Crystal Structure of New Antimonides CeNi2Sb2 and CeNi2Sb2 p-Phase, Seriya B: Geologichni, Khimichni ta Biologichni Nauki, 1982, p 46-49

  18. J. Callaway, Low-Temperature Lattice Thermal Conductivity, Phys. Rev., 1961, 122, p 787

    Article  ADS  Google Scholar 

  19. D. Cahill and R. Pohl, Heat Flow and Lattice Vibrations in Glasses, Solid State Commun., 1989, 70, p 927

    Article  ADS  Google Scholar 

  20. F.J. Blatt, Physics of Electronic Conduction in Solids, McGraw-Hill, New York, 1968, p 210

  21. J.C.H. Chiu, Deviations from Linear Temperature Dependence of the Electrical Resistivity of V-Cr and Ta-W Alloys, Phys. Rev. B, 1976, 13, p 1507

    Article  ADS  Google Scholar 

  22. S. Berger, “Novel Thermoelectric Materials,” Ph.D. thesis, TU Vienna, Austria, 2003

  23. H. Zhang, H. Borrmann, N. Oeschler, Ch. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, and Y. Grin, Atomic Interactions in the p-Type Clathrate I Ba8Au5.3Ge40.7, Inorg. Chem., 2011, 50, p 1250-1257

    Article  Google Scholar 

Download references

Acknowledgment

Work partially supported by the Austrian FFG Project “THECLA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rogl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeiringer, I., Melnychenko-Koblyuk, N., Grytsiv, A. et al. Phase Equilibria, Crystal Chemistry and Physical Properties of Au-Ba-Ge Clathrates. J. Phase Equilib. Diffus. 32, 115–127 (2011). https://doi.org/10.1007/s11669-011-9852-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-011-9852-7

Keywords

Navigation