Skip to main content
Log in

Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In thermal spray processes, it is demonstrated that substrate shape and location have significant effects on particle in-flight behavior and coatings quality. In the present work, the suspension high-velocity oxygen fuel (HVOF) spraying process is modeled using a three-dimensional two-way coupled Eulerian–Lagrangian approach. Flat and cylindrical substrates are placed at different standoff distances, and particles characteristics near the substrates and upon impact are studied. Suspension is a mixture of ethanol, ethylene glycol, and mullite solid powder (3Al2O3·2SiO2) in this study. Suspension droplets with predefined size distribution are injected into the combustion chamber, and the droplet breakup phenomenon is simulated using Taylor analogy breakup model. Furthermore, the eddy dissipation model is used to model the premixed combustion of oxygen–propylene, and non-premixed combustion of oxygen–ethanol and oxygen–ethylene glycol. To simulate the gas phase turbulence, the realizable k–ε model is applied. In addition, as soon as the breakup and combustion phenomena are completed, the solid/molten mullite particles are tracked through the domain. It is shown that as the standoff distance increases the particle temperature and velocity decrease and the particle trajectory deviation becomes more significant. The effect of stagnation region on the particle velocity and temperature is also discussed in detail. The catch rate, which is defined as the ratio of the mass of landed particles to injected particles, is calculated for different substrate shapes and standoff distances in this study. The numerical results presented here is consistent with the experimental data in the literature for the same operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D, 2011, 44(9), p 093001

    Article  Google Scholar 

  2. P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coating, J. Therm. Spray Technol., 2009, 19, p 56-80

    Article  Google Scholar 

  3. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2009, 19, p 226-239

    Article  Google Scholar 

  4. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Tech., 2009, 203, p 2807-2829

    Article  Google Scholar 

  5. A. Klilinger, R. Gadow, G. Mauer, A. Guignard, R. Vaben, and D. Stover, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20, p 677-695

    Article  Google Scholar 

  6. J. Oberste Berghaus, J.G. Legoux, C. Moreau, R. Hui, C. Deces-Petit, W. Qu, S. Yick, Z. Wang, R. Maric, and D. Ghosh, Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes, J. Therm. Spray Technol., 2008, 17, p 700-707

    Article  Google Scholar 

  7. S. Moghtadernejad, M. Tembely, M. Jadidi, N. Esmail, and A. Dolatabadi, Shear Driven Droplet Shedding and Coalescence on a Superhydrophobic Surface, Phys. Fluids, 2015, 27, p 032106

    Article  Google Scholar 

  8. M. Jadidi, S. Moghtadernejad, and A. Dolatabadi, A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray, Coatings, 2015, 5(4), p 576-645

    Article  Google Scholar 

  9. F.L. Toma, L.M. Berger, D. Jacquet, D. Wicky, I. Villaluenga, Y.R. de Miguel, and J.S. Lindelov, Comparative Study on the Photocatalytic Behaviour of Titanium Oxide Thermal Sprayed Coatings from Powders and Suspensions, Surf. Coat. Tech., 2009, 203, p 2150-2156

    Article  Google Scholar 

  10. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach foe Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Tech., 2006, 201, p 1922-1929

    Article  Google Scholar 

  11. R. Gadow, A. Killinger, and J. Rauch, New Results in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Tech., 2008, 202, p 4329-4336

    Article  Google Scholar 

  12. R. Gadow, A. Killinger, and J. Rauch, Introduction to High-Velocity Suspension Flame Spraying (HVSFS), J. Therm. Spray Technol., 2008, 17, p 655-661

    Article  Google Scholar 

  13. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Teneze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  14. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  Google Scholar 

  15. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008

    Book  Google Scholar 

  16. C.T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 1998

    Google Scholar 

  17. M. Taleby and S. Hossainpour, Numerical Investigation of High Velocity Suspension Flame Spraying, J. Therm. Spray Technol., 2012, 21, p 1163-1172

    Article  Google Scholar 

  18. E. Gozali, S. Kamnis, and S. Gu, Numerical Investigation of Combustion and Liquid Feedstock in High Velocity Suspension Flame Spraying Process, Surf. Coat. Tech., 2013, 228, p 176-186

    Article  Google Scholar 

  19. G.I. Taylor, The Shape and Acceleration of a Drop in High-Speed Air Stream, The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol 3, G.K. Batchelor, Ed., Cambridge University Press, Cambridge, 1963, p 457-464

    Google Scholar 

  20. E. Gozali, M. Mahrukh, S. Gu, and S. Kamnis, Numerical Analysis of Multicomponent Suspension Droplets in High-Velocity Flame Spray Process, J. Therm. Spray Technol., 2014, 23, p 940-949

    Article  Google Scholar 

  21. E. Dongmo, A. Killinger, M. Wenzelburger, and R. Gadow, Numerical Approach and Optimization of the Combustion and Gas Dynamics in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Tech., 2009, 203, p 2139-2145

    Article  Google Scholar 

  22. E. Dongmo, R. Gadow, A. Killinger, and M. Wenzelburger, Modeling of Combustion as well as Heat, Mass, and Momentum Transfer During Thermal Spraying by HVOF and HVSFS, J. Therm. Spray Technol., 2009, 18, p 896-908

    Article  Google Scholar 

  23. M. Mahrukh, A. Kumar, and S. Gu, Effects of Angular Injection, and Effervescent Atomization on High-Velocity Suspension Flame Spray Process, Surf. Coat. Tech., 2016, 302, p 368-382

    Article  Google Scholar 

  24. M. Jadidi, S. Moghtadernejad, and A. Dolatabadi, Numerical Modeling of Suspension HVOF Spray, J. Therm. Spray Technol., 2016, 25, p 451-464

    Article  Google Scholar 

  25. F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23, p 3-13

    Article  Google Scholar 

  26. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24, p 11-23

    Google Scholar 

  27. K. Pourang, C. Moreau, and A. Dolatabadi, Effect of Substrate and Its Shape on in-Flight Particle Characteristics in Suspension Plasma Spraying, J. Therm. Spray Technol., 2016, 25, p 44-54

    Article  Google Scholar 

  28. E. Dalir, Three-Dimensional Modeling of Arc Voltage Fluctuations in Suspension Plasma Spraying, Master Thesis, Concordia University, Montreal, 2016

  29. A. Farrokhpanah, T.W. Coyle, and J. Mostaghimi, Numerical Study of Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26, p 12-36

    Article  Google Scholar 

  30. V.R. Srivatsan and A. Dolatabadi, Simulation of Particle–Shock Interaction in a High Velocity Oxygen Fuel Process, J. Therm. Spray Technol., 2006, 15, p 481-587

    Article  Google Scholar 

  31. M. Li and P.D. Christofides, Computational Study of Particle In-flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61, p 6540-6552

    Article  Google Scholar 

  32. M. Li and P.D. Christofides, Multi-Scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60, p 3649-3669

    Article  Google Scholar 

  33. M. Li, D. Shi, and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Gas-Phase and Particle Behavior Modeling and Feedback Control Design, Ind. Eng. Chem. Res., 2004, 43, p 3632-3652

    Article  Google Scholar 

  34. D. Shi, M. Li, and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Rule-Based Modeling of Coating Microstructure, Ind. Eng. Chem. Res., 2004, 43, p 3653-3665

    Article  Google Scholar 

  35. ANSYS Inc., ANSYS FLUENT Theory Guide, USA, 2011

  36. J.O. Berghaus and B.R. Marple, High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings, J. Therm. Spray Technol., 2008, 17, p 671-678

    Article  Google Scholar 

  37. S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication No. 1311, Lewis Research Center, Cleveland, OH, October 5 1994

  38. G.E. Lorenzetto and A.H. Lefebvre, Measurements of Drop Size on a Plain-Jet Airblast Atomizer, AIAA J., 1977, 15, p 1006-1010

    Article  Google Scholar 

  39. S. Tanvir and L. Qiao, Surface Tension of Nanofluid-Type Fuels Containing Suspended Nanomaterials, Nanoscale Res. Lett., 2012, 7, p 226

    Article  Google Scholar 

  40. M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18, p 753-768

    Article  Google Scholar 

  41. N. Zuckerman and N. Lior, Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Adv. Heat Transfer, 2006, 39, p 565-631

    Article  Google Scholar 

Download references

Acknowledgments

This article is based on the work supported by Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would like to thank Ms. Sara Saberiyan Boroujeni and Dr. Sara Moghtadernejad for their help and scientific feedback in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jadidi.

Additional information

This article is an invited paper selected from presentations at the 2017 International Thermal Spray Conference, held June 7-9, 2017, in Düsseldorf, Germany, that has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadidi, M., Yeganeh, A.Z. & Dolatabadi, A. Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates. J Therm Spray Tech 27, 59–72 (2018). https://doi.org/10.1007/s11666-017-0656-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0656-0

Keywords

Navigation