Skip to main content
Log in

Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.B. Mason and R.H. Knibbs, The Young’s Modulus of Carbon and Graphite Artefacts, Carbon, 1967, 5(5), p 493-506

    Article  Google Scholar 

  2. C. Yanhui, L. Hejun, F. Qiangang, S. Xiaohong, Q. Lehua, and W. Bingbo, Oxidation Protective and Mechanical Properties of SiC Nanowire-Toughened Si-Mo-Cr Composite Coating for C/C Composites, Corros. Sci., 2012, 58, p 315-320

    Article  Google Scholar 

  3. N.S. Jacobson and D.M. Curry, Oxidation Microstructure Studies of Reinforced Carbon/Carbon Composite, Carbon, 2006, 44(7), p 1142-1150

    Article  Google Scholar 

  4. Y.H. Chu, Q.G. Fu, C.W. Cao, H.J. Li, K.Z. Li, and Q. Lei, Microstructure and Oxidation Resistant Property of C/C Composites Modified by SiC-MoSi2-CrSi2, Surf. Eng., 2011, 27(5), p 355-361

    Article  Google Scholar 

  5. Q.G. Fu, H.J. Li, Y.J. Wang, K.Z. Li, and X.H. Shi, B2O3 Modified SiC-MoSi2 Oxidation Resistant Coating for Carbon/Carbon Composites by a Two-Step Pack Cementation, Corros. Sci., 2009, 51(10), p 2450-2454

    Article  Google Scholar 

  6. N.S. Jacobson, T.A. Leonhardt, D.M. Curry, and R.A. Rapp, Oxidative Attack of Carbon/Carbon Substrates Through Coating Pinholes, Carbon, 1999, 37, p 411-419

    Article  Google Scholar 

  7. K. Fujii, J. Nakano, and M. Shindo, Improvement of the Oxidation Resistance of a Graphite Material by Compositionally Gradient SiC/C Layer, J. Nucl. Mater., 1993, 203(1), p 10-16

    Article  Google Scholar 

  8. F.J. Buchanan and J.A. Little, Oxidation Protection of Carbon-Carbon Composites Using Chemical Vapour Deposition and Glaze Technology, Corros. Sci., 1993, 35(5-8), p 1243-1250

    Article  Google Scholar 

  9. H.T. Tsou and W. Kowbel, A Hybrid PACVD SiC/CVD Si3N4/SiC Multilayer Coating for Oxidation Protection of Composites, Carbon, 1995, 33(9), p 1279-1288

    Article  Google Scholar 

  10. J.N. Ness and T.F. Page, The Structure and Properties of Interfaces in Reaction-Bonded Silicon Carbides, Tailoring Multiph. Composite Ceram., 1986, p 347-356

  11. S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang, Pressure Less Sintering of Carbon-Coated Zirconium Diboride Powders, Mater. Sci. Eng. A, 2007, 459(1-2), p 167-171

    Article  Google Scholar 

  12. T. Feng, H.J. Li, X.H. Shi, X. Yang, and S.L. Wang, Oxidation and Ablation Resistance of ZrB2-SiC-Si/B-Modified SiC Coating for Carbon/Carbon Composites, Corros. Sci., 2013, 67, p 292-297

    Article  Google Scholar 

  13. K. Balani, S.R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, Role of Powder Treatment and Carbon Nanotube Dispersion in the Fracture Toughening of Plasma Sprayed Aluminum Oxide Carbon Nanotube Nanocomposite, J. Nanosci. Nanotechnol., 2007, 7, p 3553-3562

    Article  Google Scholar 

  14. C.H. Chen and H. Awaji, Temperature Dependence of Mechanical Properties of Aluminum Titanate Ceramics, J. Eur. Ceram. Soc., 2007, 27(1), p 13-18

    Article  Google Scholar 

  15. S. Ariharan, A. Gupta, A. Keshri, A. Agarwal, and K. Balani, Size Effect of Yttria Stabilized Zirconia Addition on Fracture Toughness and Thermal Conductivity of Plasma Sprayed Aluminum Oxide Composite Coatings, Nanosci. Nanotechnol. Lett., 2012, 4(3), p 323-332

    Article  Google Scholar 

  16. K. Balani, A. Agarwal, and T. McKechnie, Near Net Shape Fabrication Via Vacuum Plasma Spray Forming, Trans. Indian Inst. Met., 2006, 2(59), p 237-244

    Google Scholar 

  17. M. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287, p 637-640

    Article  Google Scholar 

  18. K. Balani, S. Bakshi, D. Lahiri, and A. Agarwal, Grain Growth Behavior of Aluminum Oxide Reinforced with Carbon Nanotube During Plasma Spraying and Post-Spray Consolidation, Int. J. Appl. Ceram. Technol., 2010, 7(6), p 846-855

    Article  Google Scholar 

  19. Y. Chen, K. Balani, and A. Agarwal, Analytical Model to Evaluate Interface Characteristics of Carbon Nanotube Reinforced Aluminum Oxide Nanocomposites, Appl. Phys. Lett., 2008, 92(1), p 011916

    Article  Google Scholar 

  20. J. Sun, L. Gao, and X. Jin, Reinforcement of Alumina Matrix with Multi-Walled Carbon Nanotubes, Ceram. Int., 2005, 31(6), p 893-896

    Article  Google Scholar 

  21. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, and Z.F. Ren, Superplastic Carbon Nanotubes, Nature, 2006, 439, p 281

    Article  Google Scholar 

  22. F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert, and M. Rühle, Microstructural Investigations on Zirconium Oxide-Carbon Nanotube Composites Synthesized by Hydrothermal Crystallization, Carbon, 2004, 42(10), p 1995-1999

    Article  Google Scholar 

  23. W.-B. Tian, Y.-M. Kan, G.-J. Zhang, and P.-L. Wang, Effect of Carbon Nanotubes on the Properties of ZrB2-SiC Ceramics, Mater. Sci. Eng. A, 2008, 487(1-2), p 568-573

    Article  Google Scholar 

  24. G.B. Yadhukulakrishnan, A. Rahman, S. Karumuri, M.M. Stackpoole, A.K. Kalkan, R.P. Singh, and S.P. Harimkar, Spark Plasma Sintering of Silicon Carbide and Multi-walled Carbon Nanotube Reinforced Zirconium Diboride Ceramic Composite, Mater. Sci. Eng. A, 2012, 552, p 125-133

    Article  Google Scholar 

  25. S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma Sprayed Aluminum Oxide Multiwalled Carbon Nanotube Composites, J. Am. Ceram. Soc., 2008, 91(3), p 942-947

    Article  Google Scholar 

  26. A. Nisar, S. Ariharan, and K. Balani, Synergistic Reinforcement of Carbon Nanotubes and Silicon Carbide for Toughening Tantalum Carbide Based Ultrahigh Temperature Ceramic, J. Mater. Res., 2016, 31(6), p 682-692

    Article  Google Scholar 

  27. M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., 2001, 21(8), p 1081-1086

    Article  Google Scholar 

  28. S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang, Pressureless Sintering of Carbon-Coated Zirconium Diboride Powders, Mater. Sci. Eng. A, 2007, 459(1), p 167-171

    Article  Google Scholar 

  29. N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, M. Yamaguchi, and S. Otani, Temperature Dependence of Thermal Expansion and Elastic Constants of Single Crystals of ZrB2 and the Suitability of ZrB2 as a Substrate for GaN Film, J. Appl. Phys., 2003, 93(1), p 88-93

    Article  Google Scholar 

  30. A. Huntz, L. Maréchal, B. Lesage, and R. Molins, Thermal Expansion Coefficient of Alumina Films Developed by Oxidation of a FeCrAl Alloy Determined by a Deflection Technique, Appl. Surf. Sci., 2006, 252(22), p 7781-7787

    Article  Google Scholar 

  31. A. Nisar, S. Ariharan, T. Venkateswaran, N. Sreenivas, and K. Balani, Oxidation Studies on TaC Based Ultra-High Temperature Ceramic Composites Under Plasma Arc Jet Exposure, Corros. Sci., 2016

  32. L. Xiaowei, R.J. Charles, and Y. Suyuan, Effect of Temperature on Graphite Oxidation Behaviour, Nucl. Eng. Des., 2004, 227(3), p 273-280

    Article  Google Scholar 

  33. J. Gallego, C. Batiot-Dupeyat, and F. Mondragón, Activation Energies and Structural Changes in Carbon Nanotubes During Different Acid Treatments, J. Therm. Anal. Calorim., 2013, 114(2), p 597-602 (in English)

    Article  Google Scholar 

  34. J. Li, P. Eveno, and A.M. Huntz, Oxidation of SiC, Mater. Corros., 1990, 41(12), p 716-725

    Article  Google Scholar 

  35. A.K. Kuriakose and J.L. Margrave, The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures, J. Electrochem. Soc., 1964, 111(7), p 827-831

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Board of Research in Nuclear Sciences (BRNS), India (Grant No. 2013/36/12-BRNS/0736). K.B. acknowledges a P.K. Kelkar fellowship from the Indian Institute of Technology Kanpur. The authors acknowledge useful discussions with Dr. Kallol Mondal, IIT Kanpur, and Dr. L. Neelakantan, IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantesh Balani.

Additional information

S. Ariharan and Pradyut Sengupta contributed equally as first author.

Appendix

Appendix

See Appendices A1, A2 and A3.

Appendix A1
figure 12

Schematic diagrams of (a) atmospheric-plasma-sprayed graphite substrates in cross-sectional view and (c) spark-plasma-sintered composite pellets, and (b) coated graphite sectioned for thermogravimetric analysis

Appendix A2
figure 13

Load-displacement graphs obtained using instrumented microindentation on SPS composites

Appendix A3
figure 14

Schematic showing high temperature oxidation (dry atmosphere) of spark-plasma-sintered composites: (a) S20Z (top left: at room temperature, and bottom left: at ~1268 K), and (b) S20Z3C (top center: at room temperature, middle center: at ~873 K, and bottom center: at ~1268 K), and corresponding Raman spectrum (top right: before oxidation, bottom right: after oxidation)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariharan, S., Sengupta, P., Nisar, A. et al. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite. J Therm Spray Tech 26, 417–431 (2017). https://doi.org/10.1007/s11666-016-0508-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0508-3

Keywords

Navigation