Skip to main content
Log in

Phase Formation and Transformation in Alumina/YSZ Nanocomposite Coating Deposited by Suspension Plasma Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension Plasma Spray process was used for deposition of pseudo-eutectic composition of alumina-yttria-stabilized zirconia as a potential thermal barrier coating using Mettech axial III torch. Process variables including feed and plasma parameters were altered to find their effects on the formation of phases in the composite coating. The in-flight particle velocity was found to be the crucial parameter on phase formation in the resulting coatings. Low particle velocities below 650 m/s result in the formation of stable phases i.e., α-alumina and tetragonal zirconia. In contrast, high particle velocities more than 750 m/s favor the metastable γ-alumina and cubic zirconia phases as dominant structures in as-deposited coatings. Accordingly, the plasma auxiliary gas and plasma power as influential parameters on the particle velocity were found to be reliable tools in controlling the resulting coating structure thus, the consequent properties. The noncrystalline portion of the coatings was also studied. It was revealed that upon heating, the amorphous phase prefers to crystallize into pre-existing crystalline phases in the as-deposited coating. Thus, the ultimate crystalline structure can be designed using the parameters that control the particle velocity during plasma spray coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Yashima, M. Kakihana, and M. Yoshimura, Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application, Solid State Ionics, 1996, 86-88, p 1131-1149

    Article  CAS  Google Scholar 

  2. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91

    Article  CAS  Google Scholar 

  3. M. Andritschky, I. Cunha, and P. Alpuim, Thermal Stability of Zirconia/Alumina Thin Coatings Produced by Magnetron Sputtering, Surf. Coat. Technol., 1997, 94-95(1-3), p 144-148

    Article  CAS  Google Scholar 

  4. A.M. Limarga, S. Widjaja, and T.H. Yip, Mechanical Properties and Oxidation Resistance of Plasma-Sprayed Multilayered Al2O3/ZrO2 Thermal Barrier Coatings, Surf. Coat. Technol., 2005, 197(1), p 93-102

    Article  CAS  Google Scholar 

  5. P. Ramaswamy, S. Seetharamu, K.B.R. Varma, and K.J. Rao, Al2O3/ZrO2 Composite Coatings for Thermal-Barrier Applications, Compos. Sci. Technol., 1997, 57(1), p 81-89

    Article  CAS  Google Scholar 

  6. M.A. Golozar, J. Mostaghimi, T.W. Coyle, and R. Soltani, Wear Behavior of Nanostructured and Conventional Y-PSZ Coatings, Materials Degradation: Innovation, Inspection, Control and Rehabilitation, Proceedings of the International Symposium on Materials Degradation: Innovation, Inspection, Control and Rehabilitation, August 21-24, 2005 (Calgary, AB, Canada), 2005, p 273-285

  7. R.J. Damani and P. Makroczy, Heat Treatment Induced Phase and Microstructural Development in Bulk Plasma Sprayed Alumina, J. Eur. Ceram. Soc., 2000, 20(7), p 867-888

    Article  CAS  Google Scholar 

  8. K.S. Ravichandran, K. An, R.E. Dutton, and S.L. Semiatin, Thermal Conductivity of Plasma-Sprayed Monolithic and Multilayer Coatings of Alumina and Yttria-Stabilized Zirconia, Am. Ceram. Soc., 1999, 82(3), p 673-682

    Article  CAS  Google Scholar 

  9. E.T. Strangman and D. Raybould, Durable Thermal Barrier Coatings, U.S. Patent 2006/0115660, 2006

  10. Z. Chen, R.W. Trice, M. Besser, Xiaoyun Yang, and D. Sordelet, Air-Plasma Spraying Colloidal Solutions of Nanosized Ceramic Powders, J. Mater. Sci., 2004, 39(1), p 4171-4178

    Article  CAS  ADS  Google Scholar 

  11. Y. Zeng, C. Ding, and S. Lee, Plasma Sprayed Coatings Using Different Nano-size Alumina Powders, Thermal Spray 2003: Advancing the Science and Applying the Technology, Proceedings of the International Thermal Spray Conference, May 2003 (Orlando, FL, United States), 2003, p 671-674

  12. X. Zhao, Y. An, J. Chen, H. Zhou, and B. Yin, Properties of Al2O3-40 Wt.% ZrO2 Composite Coatings from Ultra-Fine Feedstocks by Atmospheric Plasma Spraying, Wear, 2008, 265(11-12), p 1642-1648

    Article  CAS  Google Scholar 

  13. S. Dosta, I.G. Cano, J.R. Miguel, and J.M. Guilemany, Production and Characterization of Metastable ZrO2-Al2O3 Coatings Obtained by APS + Quench, J. Therm. Spray Technol., 2008, 17(3), p 360-364

    Article  CAS  ADS  Google Scholar 

  14. J. Oberste Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  ADS  CAS  Google Scholar 

  15. A.J. Skoog, A.J. Murphy, and T.J. Tomlinson, Method for Applying a Plasma Sprayed Coating Using Liquid Injection, U.S. Patent 2006/0222777, 2006

  16. A.L. Vasiliev and N.P. Padture, Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: II. Ternary ZrO2-Y2O3-Al2O3 System, Acta Mater., 2006, 54(18), p 4921-4928

    Article  CAS  Google Scholar 

  17. A.L. Vasiliev, N.P. Padture, and X. Ma, Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2-Al2O3 System, Acta Mater., 2006, 54(18), p 4913-4920

    Article  CAS  Google Scholar 

  18. T. Chraska, K. Neufussa, J. Dubsky, P. Ctibor, and P. Rohan, Fabrication of Bulk Nanocrystalline Alumina-Zirconia Materials, Ceram. Int., 2008, 34(5), p 1229-1236

    Article  CAS  Google Scholar 

  19. P. Fauchais, V. Rat, C. Delbos, J.F. Coudert, T. Chartier, and L. Bianchi, Understanding of Suspension DC Plasma Spraying of Finely Structured Coatings for SOFC, IEEE Trans. Plasma Sci., 2005, 33(2 Pt 3), p 920-930

    Article  CAS  ADS  Google Scholar 

  20. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Teneze, Parameters Controlling Liquid Plasma Spraying: Solution, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-57

    Article  CAS  ADS  Google Scholar 

  21. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying. Part 2: Zirconia Particle Treatment and Coating Formation. Plasma Chem. Plasma Process., 26, 2006, p 393-414

    Article  CAS  Google Scholar 

  22. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics, J. Therm. Spray Technol., 2008, 17(5-6), p 685-691

    Article  CAS  ADS  Google Scholar 

  23. W. Kraus and G. Nolze, PowderCell, Version 2.4, Programm zur Manipulation von Kristallstrukturen und Berechnung der Rontgenpulverdiffraktogramme, Bundesanstalt für Materialforschung und-prüfung, D-12205, Berlin

  24. H. Zhang, X.Y. Wang, L.L. Zheng, and S. Sampath, Numerical Simulation of Nucleation, Solidification, and Microstructure Formation in Thermal Spraying, Int. J. Heat Mass Trans., 2004, 47, p 2191-2203

    Article  CAS  Google Scholar 

  25. A. Haddadi, F. Nardou, P. Fauchais, A. Grinaud, and A.C. Leger, Influence of Substrate and Coating Temperature on Columnar Growth within Plasma Sprayed Zirconia and Alumina Coatings, United Forum for Scientific and Technological Advances, C.C. Berndt, Ed., ASM International, 1997, p 671-680

  26. P. Fauchais, M. Vardelle, A. Vardelle, L. Bianchi, and A.C. Leger, Parameters Controlling the Generation and Properties of Plasma Spray Zirconia Coatings, Plasma. Chem. Plasma Process., 1996, 16(1), p 99S-125S

    Article  CAS  Google Scholar 

  27. A. Vardelle, C. Robert, G.X. Wang, and S. Sampath, Analysis of Nucleation, Phase Selection and Rapid Solidification of an Alumina Splat, Thermal Spray: A United Forum for Science and Technological Advances, C.C. Berndt, Ed., ASM International, 1997, p 635-643

  28. T. Chraska and H.K. Alexander, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia-Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397, p 40-48

    Article  CAS  ADS  Google Scholar 

  29. J.W. Christian, The Theory of Transformations in Metals and Alloys, Elsevier Science Ltd./Pergamon, Oxford, 2002

    Google Scholar 

  30. H.-J. Kim and Y.J. Kim, Amorphous Phase Formation of the Pseudo-Binary Al2O3-ZrO2 Alloy during Plasma Spray Processing, J. Mater. Sci., 1999, 34(1), p 29-33

    Article  CAS  Google Scholar 

  31. X.-L. Wu, Q. Ren, and X.-M. He, Preparation of Nanoscale High-Purity α-Alumina Powders, Key Eng. Mater., 2007, 336-338, p 2051-2053

    Article  CAS  Google Scholar 

  32. J. Ilavsky, J. Wallace, and J.K. Stalick, Thermal Spray Yittria-Stabilized Zirconia Phase Changes during Annealing, J. Therm. Spray Technol., 2001, 10(3), p 497-501

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Medraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasi, F., Medraj, M., Dolatabadi, A. et al. Phase Formation and Transformation in Alumina/YSZ Nanocomposite Coating Deposited by Suspension Plasma Spray Process. J Therm Spray Tech 19, 787–795 (2010). https://doi.org/10.1007/s11666-009-9461-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9461-8

Keywords

Navigation