Skip to main content

Advertisement

Log in

Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.L. Nash, H. Choo, P. Nash, L.L. Daemen, and M.A.M. Bourke, Lattice Dilation in a Hydrogen Charged Steel, International Centre for Diffraction Data, Adv. X-Ray Anal., 2003, 46, p 238–239

    Google Scholar 

  2. J.M. Tartaglia, K.A. Lazzari, G.P. Hui, and K.L. Hayrynen, A Comparison of Mechanical Properties and Hydrogen Embrittlement Resistance of Austempered vs Quenched and Tempered 4340 Steel, J. Metall. Mater. Trans. A., 2008, 39A, p 559–576

    Article  Google Scholar 

  3. H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, J. Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 1066–1074

    Article  Google Scholar 

  4. I.O. Shim and J.G. Bryne, Microstructural Structural Response of 4340 Steel to Hydrogen Charging, J. Eng. Mater., 1990, 12, p 235–244

    Article  Google Scholar 

  5. I.A. Barnoush, Hydrogen Embrittlement. http://www.uni-saarland.de/fak8/wwm/research/phd_barnoush/hydrogen.pdf. N.p., 1 Dec 2011. Web. 2 Feb 2014, p 13–19

  6. N.C. Uwakweh, C. Oswald, A. Samuel, and S. Vinod, Hydrogen Charging of AISI-321 Austenitic Stainless Steel by Cathodic Polarization, in Tri-Service Corrosion Conference, 2005, p 1–16

  7. J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mechanical Properties and Fracture Behavior of Hydrogen Charges AHSS/UHSS Grades at High- and Low Strain Rate Tests, Mater. Sci. Eng. A, 2014, 590, p 360–367

    Article  Google Scholar 

  8. J.P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A, 1980, 11, p 861–890

    Article  Google Scholar 

  9. H. Luo, C.F. Dong, Z.Y. Liu, M.T.J. Maha, and X.G. Li, Characterization of Hydrogen Charging of 2205 Duplex Stainless Steel and its Correlation with Hydrogen-Induced Cracking, Mater. Corros., 2013, 64, p 26–29

    Article  Google Scholar 

  10. A. Valiente, J. Toribio, R. Cortes, and L. Caballero, Tensile Failure of Stainless-Steel Notched Bars Under Hydrogen Charging, J. Eng. Mater. Technol., 1996, 118, p 118–191

    Article  Google Scholar 

  11. R. Fratesi and G. Roventi, Hydrogen-Inclusion Interaction in Tempered Martensite Embrittled SAE 4340 Steels, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 1989, 119, p 17–22

    Article  Google Scholar 

  12. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., J. Wiley & Sons, New York, 1996, p 485–514

    Google Scholar 

  13. R.P. Gangloff, Hydrogen Assisted Cracking of High Strength Alloys, in Comprehensive Structural Integrity, vol. 6. Elsevier Science, New York, 2003, p 1–7

  14. T. Neeraj, R. Srinivasan, and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60, p 5160–5171

    Article  Google Scholar 

  15. J. Venenzuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, The Influence of Hydrogen on the Mechanical and Fracture Properties of Some Martensitic Advanced High Strength Steels Studied Using the Linearly Increasing Stress Test, Corros. Sci., 2015, 99, p 98–117

    Article  Google Scholar 

  16. S.-J. Lee, J. Aronevich, G. Krauss, and D. Matlock, Hydrogen Embrittlement of Hardened Low-Carbon Sheet Steel, ISIJ Int., 2010, 50(2), p 294–301

    Article  Google Scholar 

  17. D. Perez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Evaluation of Hydrogen Trapping in High Strength Steels by Thermal Desorption Spectroscopy, Mater. Sci. Eng. A, 2012, 551, p 50–58

    Article  Google Scholar 

  18. F. Liu and Y. Zhao, Effects of Hydrogen Induced Delay Fracture on High-Strength Steel Plate of Automobile and Improvement, Frat. Integr. Strut., 2016, 36, p 139–150

    Google Scholar 

  19. G. Wang, Y. Yan, J. Li, J. Huang, Y. Su, and L. Qiao, Hydrogen Embrittlement Assessment of Ultra-High Strength Steel 30CrMnSiNi2, Corros. Sci., 2013, 77, p 273–280

    Article  Google Scholar 

  20. X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, and Y.F. Sun, Effect of Microstructures and Inclusions on Hydrogen-Induced Cracking and Blistering of A537 Steel, Mater. Sci. Eng. A, 2015, 642, p 181–186

    Article  Google Scholar 

  21. ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. ASTM F326-96 (2012) Standard Test Method for Electronic Measurement for Hydrogen Embrittlement From Cadmium Electroplating Processes. N.p., n.d. Web. 02 March 2014.

  22. ASTM F1624-09 Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique.” N.p., n.d. Web. 02 Aug. 2014.

  23. M. Szczepanski, The Brittleness of Steel, Wiley, New York, 1963, p 197–199

    Google Scholar 

  24. M. Darbie Jean, A Model for Studying Hydrogen Embrittlement Using Severely Charged Impact Specimens, Master’s thesis, University of Washington, 1997

  25. K. Mori, E.W. Lee, W.E. Frazier, K. Nigi, G. Battel, A. Tran, I. Iriarte, O. Perez, H. Ruitz, T. Choi, P. Stoyanov, J. Ogren, J. Alrashid, and O.S. Es-Said, Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen Charged 4340 Steel, NJMEPEG, 2015, 24, p 329–337

    Article  Google Scholar 

  26. J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards, Hydrogen Transport by Dislocations, Met. Trans. A, 1976, 7A, p 821–829

    Article  Google Scholar 

  27. P. Bastien, and P. Azou, Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension, in Proceedings of the First World Metallurgical Congress, ASM, Cleveland, OH, 1951, p 535–552

  28. G.M. Pressouyre and I.M. Bernstein, A Quantitative Analysis of Hydrogen Trapping, Met. Trans. A, 1987, 9A, p 1571–1580

    Google Scholar 

  29. Matweb.com, 4340 Steel Material Properties. http://www.matweb.com, 2010

  30. ASTM E8, Instron Tension Testing of Metallic Materials. http://www.instron.us/wa/home/default_en.aspx, 2010

  31. ASTM E23, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Designation: E23, vol. 03.01. American Society for Testing and Materials, West Conshohocken, PA, 2012.

  32. SAE AMS 2400, Aerospace Material Specification, Plating Cadmium, 2013-02.

  33. M.J. Haynes and R.P. Gangloff, Temperature Dependent Void Sheet Fracture in Al-Cu-Mg-Ag, Metall. Trans. A, 1998, 11A, p 1599–1613

    Article  Google Scholar 

  34. K.S. Ghosh and D.K. Mondal, Effects of Grain Size on Mechanical Electrochemical and Hydrogen Embrittlement Behavior of a Micro-Alloy-Steel, Mater. Sci. Eng. A, 2013, 559, p 693–705

    Article  Google Scholar 

  35. A.W. Thompson, Ductile Fracture Topography: Geometrical Contributions and Effects of Hydrogen, Metall. Trans. A, 1979, 10A, p 727–731

    Article  Google Scholar 

  36. J.K. Tien, K. Nair, and R.R. Jensen, Dislocation Sweeping of Hydrogen and Hydrogen Embrittlement, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., Metallurgical Society of AIME, New York, NY, 1981, p 37–56

    Google Scholar 

  37. S.M. Charca, O.N. Uwakweh, and U. Agarwala, Hydrogen Transport Conditions and Effects in Cathodically Polarized AF 1410 Steel, Metall. Mater. Trans. A, 2007, 38A, p 2389–2399

    Article  Google Scholar 

  38. J. Albrecht, I.M. Bernstein, and A.W. Thompson, Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans. A, 1982, 13A, p 811–820

    Article  Google Scholar 

  39. A.W. Thompson and B.A. Wilcox, Deformation and Fracture of Dispersion Strengthened Nickel Charged with Hydrogen, Scr. Met., 1972, 6, p 689–696

    Article  Google Scholar 

  40. C.G. Rhodes and A.W. Thompson, Microstructure and Hydrogen Performance of Alloy 903, Metal. Trans. A., 1977, 8A, p 949–954

    Article  Google Scholar 

  41. N.F. Foire and J.A. Kargol, Hydrogen-Related Embrittlement of Ni-Base Superalloy, Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, Ed., TMS-AIME, Warrendale, PA, 1981, p 851–862

    Google Scholar 

  42. I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68, p 671–692

    Article  Google Scholar 

  43. S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localized-Slip Process, Acta Mater., 1988, 36, p 2639–2661

    Article  Google Scholar 

  44. H.K. Birnbaum and P. Sorfronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1988, 36, p 2639–2661

    Google Scholar 

  45. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59, p 1601–1606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Es-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-Said, O.S., Alcisto, J., Guerra, J. et al. Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel. J. of Materi Eng and Perform 25, 3606–3614 (2016). https://doi.org/10.1007/s11665-016-2246-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2246-6

Keywords

Navigation