Skip to main content
Log in

Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, and V. Ezersky, Analysis of the Creep Behaviour of a Thixoformed AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2000, 289(1-2), p 172–181

    Article  Google Scholar 

  2. B.L. Mordike and T. Ebert, Magnesium Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45

    Article  Google Scholar 

  3. P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Microstructure Development of High Temperature Deformed AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2015, 626, p 195–202

    Article  Google Scholar 

  4. G. Fallahi and H. Mokhtari, Performance Improvement of Parallel Active Power Filters Using Droop Control Method, Asia-Pacific Power and Energy Engineering Conference, 2009,  p 1–4

  5. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, and R.O. Scattergood, Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis, Metallogr. Microstruct. Anal., 2015, 4(5), p 337–343

    Article  Google Scholar 

  6. N. Farahbakhsh, P.S. Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of Polyethylene Nanocomposites Reinforced with Nanofibrillated Cellulose from Cotton and Wood Sources, J. Appl. Polym. Sci., 2014, 132(17), p 10

    Google Scholar 

  7. P. Shahbeigi Roodposhti, N. Farahbakhsh, A. Sarkar, and K. L. Murty, A Review on the Equal Channel Angular Process of Commercially Pure Titanium, Proc. MS&T14, 2014, p. 1559–1566.

  8. S. Ziaei and M.A. Zikry, Modeling the Effects of Dislocation–Density Interaction, Generation, and Recovery on the Behavior of H.C.P. Materials, Metall. Mater. Trans. A, 2014.

  9. P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy, Magnes. Technol., 2015, p 29–34.

  10. P. Shahbeigi Roodposhti, A. Sarkar, and K.L. Murty, Fracture Behavior of AZ31 Magnesium Alloy During Low Stress High Temperature Deformation, Metallogr. Microstruct. Anal., 2015, 4, p 91–101

    Article  Google Scholar 

  11. F. Czerwinski, Magnesium Alloys Design, Processing and Properties, InTech, Rijeka, 2011

    Book  Google Scholar 

  12. B.H. Kim, S.W. Lee, Y.H. Park, and I.M. Park, The Microstructure, Tensile Properties, and Creep Behavior of AZ91, AS52 and TAS652 Alloy, J. Alloys Compd., 2010, 493(1-2), p 502–506

    Article  Google Scholar 

  13. P. Zhang, Creep Behavior of the Die-Cast Mg-Al Alloy AS21, Scr. Mater., 2005, 52(4), p 277–282

    Article  Google Scholar 

  14. K.L. Murty, G. Dentel, and J. Britt, Effect of Temperature on Transitions in Creep Mechanisms in Class-A Alloys, Mater. Sci. Eng. A, 2005, 410-411, p 28–31

    Article  Google Scholar 

  15. K. Linga Murty, Transitional Creep Mechanisms in Al-5 Mg at High Stresses, Scr. Metall., 1973, 7(9), p 899–903

    Article  Google Scholar 

  16. K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous Glide, Dislocation Climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg, Acta Metall., 1972, 20, p 1009–1018

    Article  Google Scholar 

  17. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun, Microstructure and Mechanical Properties of Mg-Al Based Alloy with Calcium and Rare Earth Additions, Mater. Sci. Eng. A, 2003, 356(1-2), p 1–7

    Article  Google Scholar 

  18. K. Meshinchi Asl, A. Tari, and F. Khomamizadeh, The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sci. Eng. A, 2009, 523(1-2), p 1–6

    Article  Google Scholar 

  19. D.H. Kang, S.S. Park, and N.J. Kim, Development of Creep Resistant Die Cast Mg-Sn-Al-Si Alloy, Mater. Sci. Eng. A, 2005, 413-414, p 555–560

    Article  Google Scholar 

  20. K. Meshinchi Asl, A. Masoudi, and F. Khomamizadeh, The Effect of Different Rare Earth Elements Content on Microstructure, Mechanical and Wear Behavior of Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2010, 527(7-8), p 2027–2035

    Article  Google Scholar 

  21. B. Amir Esgandari, H. Mehrjoo, B. Nami, and S.M. Miresmaeili, The Effect of Ca and RE Elements on the Precipitation Kinetics of Mg17Al12 Phase During Artificial Aging of Magnesium Alloy AZ91, Mater. Sci. Eng. A, 2011, 528(15), p 5018–5024

    Article  Google Scholar 

  22. S. Spigarelli, M. Regev, E. Evangelista, and A. Rosen, Review of Creep Behaviour of AZ91 Magnesium Alloy Produced by Different Technologies, Mater. Sci. Technol., 2001, 17, p 627–638

    Google Scholar 

  23. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Scha, and D.H. Stjohn, Development of the As-cast Microstructure in Magnesium-Aluminium Alloys, J. Light Met., 2001, 1, p 61–72

    Article  Google Scholar 

  24. I. Manna, S.K. Pabi, and W. Gust, Discontinuous Reactions in Solids, Int. Mater. Rev., 2001, 46(2), p 53–91

    Article  Google Scholar 

  25. A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of Elemental Additions (Si and Sb) on the Ageing Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(24-25), p 6543–6550

    Article  Google Scholar 

  26. C. Do Lee and K.S. Shin, Effects of Precipitate and Dendrite Arm Spacing on Tensile Properties and Fracture Behavior of As-Cast Magnesium-Aluminum Alloys, Met. Mater. Int., 2003, 9(1), p 21–27

    Article  Google Scholar 

  27. S.M. Zhu, B.L. Mordike, J.F. Nie, and A.C. Tests, Creep and Rupture Properties of a Squeeze-Cast Mg-Al-Ca Alloy, Metall. Mater. Trans. A, 2006, 37, p 1221–1229

    Article  Google Scholar 

  28. M. Regev, E. Aghion, and A. Rosen, Creep Studies of AZ91D Pressure Die Casting, Mater. Sci. Eng. A, 1997, 2344236, p 123–126

    Article  Google Scholar 

  29. K. Ishikawa, H. Watanabe, and T. Mukai, High Strain Rate Deformation Behavior of an AZ91 Magnesium Alloy at Elevated Temperatures, Mater. Lett., 2005, 59(12), p 1511–1515

    Article  Google Scholar 

  30. A. Srinivasan, J. Swaminathan, U.T.S. Pillai, K. Guguloth, and B.C. Pai, Effect of Combined Addition of Si and Sb on the Microstructure and Creep Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 485(1-2), p 86–91

    Article  Google Scholar 

  31. Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Sb Addition on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Scr. Mater., 2000, 43(11), p 1009–1013

    Article  Google Scholar 

  32. Y. Guangyin, S. Yangshan, and D. Wenjiang, Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2001, 308(1-2), p 38–44

    Article  Google Scholar 

  33. S. Spigarelli, Creep of a Thixoformed and Heat Treated AZ91 Mg-Al-Zn Alloy, Scr. Mater., 2000, 42(4), p 397–402

    Article  Google Scholar 

  34. S.-Y. Lee and S.-I. Oh, Thixoforming Characteristics of Thermo-Mechanically Treated AA 6061 Alloy for Suspension Parts of Electric Vehicles, J. Mater. Process. Technol., 2002, 130-131, p 587–593

    Article  Google Scholar 

  35. J.Z. Sheng, Y.H. Hua, Z.X. Ping, S.O. Sugiyama, and J. Yanagimoto, Numerical and Experimental Investigations of Semi-Solid AZ91D Magnesium Alloy in Thixoforming Process, J. Mater. Process. Technol., 2008, 202(1-3), p 412–418

    Article  Google Scholar 

  36. A. Srinivasan, K.K. Ajithkumar, J. Swaminathan, U.T.S. Pillai, and B.C. Pai, Creep Behavior of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 109–113

    Article  Google Scholar 

  37. K.L. Murty, Grain Boundary Sliding and Viscous Glide Mechanisms of High Temperature Creep in Pb-6% Sn, Scr. Metall., 1973, 7, p 1083–1088

    Article  Google Scholar 

  38. A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, and B.C. Pai, Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(6), p 1395–1403

    Article  Google Scholar 

  39. J.A. Liu, S.R. Yu, Z.Q. Huang, G. Ma, and Y. Liu, Microstructure and Compressive Property of In Situ Mg2Si Reinforced Mg-Microballoon Composites, J. Alloys Compd., 2012, 537, p 12–18

    Article  Google Scholar 

  40. Z. Trojanová, V. Gärtnerová, A. Jäger, A. Námešný, M. Chalupová, P. Palček, and P. Lukáč, Mechanical and Fracture Properties of an AZ91 Magnesium Alloy Reinforced by Si and SiC Particles, Compos. Sci. Technol., 2009, 69(13), p 2256–2264

    Article  Google Scholar 

  41. G.Y. Yuan, Z.L. Liu, Q.D. Wang, and W.J. Ding, Microstructure Refinement of Mg-Al-Zn-Si Alloys, Mater. Lett., 2002, 56(1-2), p 53–58

    Article  Google Scholar 

  42. A. Srinivasan, U.T.S. Pillai, J. Swaminathan, S.K. Das, and B.C. Pai, Observations of Microstructural Refinement in Mg-Al-Si Alloys Containing Strontium, J. Mater. Sci., 2006, 41(18), p 6087–6089

    Article  Google Scholar 

  43. A. Boby, K.K. Ravikumar, U.T.S. Pillai, and B.C. Pai, Effect of Antimony and Yttrium Addition on the High Temperature Properties of AZ91 Magnesium Alloy, Procedia Eng., 2013, 55, p 98–102

    Article  Google Scholar 

  44. T.G. Langdon, Deformation Mechanism in HCP Metals at Elevated Temperatures -I. Creep Behavior of Magnesium, Acta Metall., 1981, 29, p 1969–1982

    Article  Google Scholar 

  45. G. Tong, H. Liu, and Y. Liu, Effect of Rare Earth Additions on Microstructure and Mechanical Properties of AZ91 Magnesium Alloys, Trans. Nonferr. Met. Soc. China, 2010, 20, p s336–s340

    Article  Google Scholar 

  46. R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39

    Article  Google Scholar 

  47. D. Amberger, P. Eisenlohr, and M. Göken, Microstructural Evolution During Creep of Ca-Containing AZ91, Mater. Sci. Eng. A, 2009, 510-511, p 398–402

    Article  Google Scholar 

  48. Q. Wang, W. Chen, W. Ding, Y. Zhu, and M. Mabuchi, Effect of Sb on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2001, 32(March), p 787–794

    Article  Google Scholar 

  49. B. Nami, S.G. Shabestari, H. Razavi, S. Mirdamadi, and S.M. Miresmaeili, Effect of Ca, RE Elements and Semi-Solid Processing on the Microstructure and Creep Properties of AZ91 Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1261–1267

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by National Science Foundation through Grant DMR-0968825 and Department of Energy, Grant DE-NE0000538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiman Shahbeigi Roodposhti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbeigi Roodposhti, P., Sarkar, A., Murty, K.L. et al. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy. J. of Materi Eng and Perform 25, 3697–3709 (2016). https://doi.org/10.1007/s11665-016-2222-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2222-1

Keywords

Navigation