Skip to main content
Log in

Microstructural Evolution and Structure-Hardness Relationship in an Al-4wt.%Mg Alloy Processed by High-Pressure Torsion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Coarse-grained Al-4wt.%Mg alloy with high stacking fault energy was deformed by high-pressure torsion (HPT) at room temperature. The HPT-induced grain refinement process of the alloy can be clarified as follows: (1) the randomly distributed dislocations firstly interact and rearrange to form dislocation cells; (2) with increasing the strain, these cell boundaries transform to small-angle grain boundaries that act as the dislocation sources, and therefore Shockley partial dislocations on the glide plane (111) can be easily emitted to accommodate plastic deformation; (3) along with the partial dislocations emission from low angle grain boundaries, the low angle grain boundaries gradually transform into the high angle grain boundaries. The relationship between the microstructural evolution and hardness was also investigated. It has been shown that the relationship between grain size and hardness deviates from the Hall-Petch linear relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References:

  1. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51(4), p 427–556

    Article  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981

    Article  Google Scholar 

  3. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979

    Article  Google Scholar 

  4. G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song, Microstructural Evolution of Cu-Al Alloys Subjected to Multi-Axial Compression, Mater. Charact., 2015, 103, p 107–119

    Article  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227

    Article  Google Scholar 

  6. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, and H.S. Kim, Finite Element Analysis of Plastic Deformation in Twist Extrusion, Comput. Mater. Sci., 2012, 60, p 194–200

    Article  Google Scholar 

  7. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita, Plastic Flow, Structure and Mechanical Properties in Pure Al Deformed by Twist Extrusion, Mater. Sci. Eng. A, 2009, 519(1–2), p 105–111

    Article  Google Scholar 

  8. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45(2), p 103–189

    Article  Google Scholar 

  9. Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817

    Article  Google Scholar 

  10. M. Kawasaki, Different Models of Hardness Evolution in Ultrafine-Grained Materials Processed by High-Pressure Torsion, J. Mater. Sci., 2014, 49(1), p 18–34

    Article  Google Scholar 

  11. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development Mater, Sci. Eng. A, 2013, 560(2), p 1–24

    Article  Google Scholar 

  12. C. Huang, K. Wang, S. Wu, Z. Zhang, G. Li, and S. Li, Deformation Twinning in Polycrystalline Copper at Room Temperature and Low Strain Rate, Acta Mater., 2006, 54(3), p 655–665

    Article  Google Scholar 

  13. X. Liao, Y. Zhao, Y. Zhu, R. Valiev, and D. Gunderov, Grain-Size Effect on the Deformation Mechanisms of Nanostructured Copper Processed by High-Pressure Torsion, J. Appl. Phys., 2004, 96(1), p 636–640

    Article  Google Scholar 

  14. Z. Wang, Y. Wang, X. Liao, Y. Zhao, E. Lavernia, Y. Zhu, Z. Horita, and T. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scr. Mater., 2009, 60(1), p 52–55

    Article  Google Scholar 

  15. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 2003, 300(5623), p 1275–1277

    Article  Google Scholar 

  16. X. Liao, F. Zhou, E. Lavernia, S. Srinivasan, M. Baskes, D. He, and Y. Zhu, Deformation Mechanism in Nanocrystalline Al: Partial Dislocation Slip, Appl. Phys. Lett., 2003, 83(4), p 632–634

    Article  Google Scholar 

  17. M. Liu, H. Roven, X. Liu, M. Murashkin, R. Valiev, T. Ungár, and L. Balogh, Grain Refinement in Nanostructured Al-Mg Alloys Subjected to HPT, J. Mater. Sci., 2010, 45(17), p 4659–4664

    Article  Google Scholar 

  18. Z. Xu, N. Li, H. Jiang, and L. Liu, Deformation Nanotwins in Coarse-Grained Aluminum Alloy at Ambient Temperature and Low Strain Rate, Mater. Sci. Eng. A, 2015, 621, p 272–276

    Article  Google Scholar 

  19. Y. Cao, Y.B. Wang, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Applied Stress Controls the Production of Nano-Twins in Coarse-Grained Metals, Appl. Phys. Lett., 2012, 101(23), p 231903-1–231903-5

    Google Scholar 

  20. Y. Estrin, A. Molotnikov, C.H.J. Davies, and R. Lapovok, Strain Gradient Plasticity Modelling of High-Pressure Torsion, J. Mech. Phys. Solids, 2008, 56(4), p 1186–1202

    Article  Google Scholar 

  21. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49(9), p 1497–1505

    Article  Google Scholar 

  22. X. Yang, S. Ni, and M. Song, Partial Dislocation Emission in a Superfine Grained Al-Mg Alloy Subject to Multi-axial Compression, Mater. Sci. Eng. A, 2015, 641, p 189–193

    Article  Google Scholar 

  23. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation Processes in the Deformation of Nanocrystalline Aluminum by Molecular-Dynamic Simulation, Nat. Mater., 2002, 1(1), p 45–49

    Article  Google Scholar 

  24. R.J. Asaro, P. Krysl, and B. Kad, Deformation Mechanism Transitions in Nanoscale FCC Metals, Philos. Mag. Lett., 2003, 83(12), p 733–743

    Article  Google Scholar 

  25. Y. Zhu, X. Liao, and X. Wu, Deformation Twinning in Nanocrystalline Materials, Prog. Mater. Sci., 2012, 57(1), p 1–62

    Article  Google Scholar 

  26. J. Wang and H. Huang, Shockley Partial Dislocations to Twin: Another Formation Mechanism and Generic Driving Force, Appl. Phys. Lett., 2004, 85(24), p 5983–5985

    Article  Google Scholar 

  27. E. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. Lond. Sect. B, 1951, 643(9), p 747–752

    Article  Google Scholar 

  28. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806

    Article  Google Scholar 

  29. H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf, Work Softening and Hall-Petch Hardening in Extruded Mechanically Alloyed Alloys, Mater. Sci. Eng. A, 1993, 164(1–2), p 1–14

    Article  Google Scholar 

  30. K.J. Kurzydłowski, B. Ralph, J.J. Bucki, and A. Garbacz, The Grain Boundary Character Distribution Effect on the Flow Stress of Polycrystals: The Influence of Crystal Lattice Texture, Mater. Sci. Eng. A, 1996, 205(1–2), p 127–132

    Article  Google Scholar 

  31. R.W. Armstrong, Theory of the Tensile Ductile-Brittle Behavior of Poly-Crystalline HCP Materials, with Application to Beryllium, Acta Metall., 1968, 16(3), p 347–355

    Article  Google Scholar 

  32. R. Armstrong, I. Codd, R. Douthwaite, and N. Petch, The Plastic Deformation of Polycrystalline Aggregates, Philos. Mag., 1962, 7(73), p 45–58

    Article  Google Scholar 

  33. D. Wu, J. Zhang, J.C. Huang, H. Bei, and T.G. Nieh, Grain-Boundary Strengthening in Nanocrystalline Chromium and the Hall-Petch Coefficient of Body-Centered Cubic Metals, Scr. Mater., 2013, 68(2), p 118–121

    Article  Google Scholar 

  34. L. Wang, H. Bei, T.L. Li, Y.F. Gao, E.P. George, and T.G. Nieh, Determining the Activation Energies and Slip Systems for Dislocation Nucleation in Body-Centered Cubic Mo and Face-Centered Cubic Ni Single Crystals, Scr. Mater., 2011, 65(3), p 179–182

    Article  Google Scholar 

  35. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, and E.J. Lavernia, Nucleation and Growth of Deformation Twins in Nanocrystalline Aluminum, Appl. Phys. Lett., 2004, 85(21), p 5049–5051

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from National Natural Science Foundation of China (51531009), Grants from the Project of Innovation-driven Plan in Central South University (2015CXS003) and the outstanding graduate project of Advanced Non-ferrous Metal Structural Materials and Manufacturing Collaborative Innovation Center are appreciated. One of the authors (M. Song) would also thank the financial support from State Key Laboratory of Powder Metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yi, J., Ni, S. et al. Microstructural Evolution and Structure-Hardness Relationship in an Al-4wt.%Mg Alloy Processed by High-Pressure Torsion. J. of Materi Eng and Perform 25, 1909–1915 (2016). https://doi.org/10.1007/s11665-016-2044-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2044-1

Keywords

Navigation