Skip to main content
Log in

Formation and Stability of Metastable Tungsten Carbide Nanoparticles

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The low temperature transformation pathways of tungsten carbide formation in the nanoscale regime were investigated using a reactive carbon molecule and tungsten. WC core/W shell nanoparticles produced by the decomposition of metastable W2C were discovered using TEM. XRD studies revealed both the elemental and carbide phases of tungsten. It was observed that the metastable W2C phase can be stabilized at RT by carbon encapsulation. These findings open new avenues to access core-shell morphologies of refractory carbides and to stabilize W2C nanoparticles at RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, and L. Xu, Theoretical Study on the Stability, Elasticity, Hardness and Electronic Structures of W-C Binary Compounds, J. Alloys Compd., 2010, 502, p 28–37

    Article  Google Scholar 

  2. T.Ya. Kosolapova, Carbides Properties, Production and Applications, Plenum Press, New York, 1971

    Google Scholar 

  3. A.D. Adamczack, A.A. Spriggs, D.M. Fitch, M. Radovic, and J.C. Grunlan, Low-Temperature Formation of Ultra-High-Temperature Transition Metal Carbides from Salt-Polymer Precursors, J. Am. Ceram. Soc., 2010, 93, p 2222–2228

    Article  Google Scholar 

  4. R.L. Levy and M. Boudart, Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis, Science, 1973, 181, p 547–549

    Article  Google Scholar 

  5. L.H. Bennett, J.R. Cuthill, A.J. McAlister, and N.E. Erickson, Electronic and Catalytic Properties of Tungsten Carbide, Science, 1975, 187, p 858–859

    Article  Google Scholar 

  6. G.F. Huttig, V. Fattinger, and K. Kohla, Preparation of Metal Carbides. I, Powder Met. Bull., 1950, 5, p 30–37

    Google Scholar 

  7. W.D. Schubert, Kinetics of the Hydrogen Reduction of Tungsten Oxide, Int. J. Ref. Metals Hard Mater., 1990, 4, p 178–191

    Google Scholar 

  8. G.R. Goren-Muginstein, S. Berger, and A. Rosen, Sintering Study of Nanocrystalline Tungsten Carbide Powders, Nanostruct. Mater., 1998, 10, p 795–804

    Article  Google Scholar 

  9. G.A. Somorjai and N. Materer, Surface Structures in Ammonia Synthesis, Top. Catal., 1994, 1, p 215–231

    Article  Google Scholar 

  10. C. Giordano, C. Erpen, W. Yao, and M. Antonietti, Synthesis of Mo and W Carbide and Nitride Nanoparticles via a Simple “Urea Glass” Route, Nano Lett., 2008, 8, p 4659–4663

    Article  Google Scholar 

  11. D. Chen, H. Wen, H. Zhai, H. Wang, X. Li, R. Zhang, J. Sun, and L. Gao, Novel Synthesis of Hierarchical Tungsten Carbide Micro-/Nanocrystals from a Single-Source Precursor, J. Am. Ceram. Soc., 2010, 93, p 3997–4000

    Article  Google Scholar 

  12. B. Wang, C. Tian, L. Wang, R. Wang, and H. Fu, Chitosan: A Green Carbon Source for the Synthesis of Graphitic Nanocarbon, Tungsten Carbide and Graphitic Nanocarbon/Tungsten Carbide Composites, Nanotechnology, 2010, 21, p 025606/1-9

    Google Scholar 

  13. M. Wu, L. Mu, Y. Wang, Y.-N. Lin, H. Guo, and T. Ma, One-Step Synthesis of Nano-Scaled Tungsten Oxides and Carbides for Dye-Sensitized Solar Cells as Counter Electrode Catalysts, J. Mater. Chem. A, 2013, 1, p 7519–7524

    Article  Google Scholar 

  14. Z. Yan, M. Cai, and P.K. She, Nanosized Tungsten Carbide Synthesized by a Novel Route at Low Temperature for High Performance Electrocatalysis, Sci. Rep. (Nature), 2013, 3, p 1646/1-7

    Google Scholar 

  15. A. Hoseinpur, J.V. Khaki, and M.S. Marashi, Mechanochemical Synthesis of Tungsten Carbide Nano Particles by Using WO3/Zn/C Powder Mixture, Mater. Res. Bull., 2013, 48, p 399–403

    Article  Google Scholar 

  16. M.K. Jones and T.M. Keller, Synthesis and Characterization of Multiple Phenylethynyl-Benzenes via Cross-Coupling with Activated Palladium Catalysts, Polymer, 1995, 36, p 187–192

    Article  Google Scholar 

  17. N.C. Halder and C.N.J. Wagner, Separation of Particle Size and Lattice Strain in Integral Breadth Measurements, Acta Crys., 1966, 20, p 312–313

    Article  Google Scholar 

  18. M.P. Seah, L.S. Gilmore, and G. Beamson, XPS: Binding Energy Calibration of Electron Spetrometers 5-re-evaluation of the Reference Energies, Surf. Interface Anal., 1998, 26, p 642–649

    Article  Google Scholar 

  19. J.H. Scofield, Hartree-Slater Subshell Photionization Cross-Sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976, 8, p 129–137

    Article  Google Scholar 

  20. A. Jablonski and C.J. Powell, The Electron Attenuation Length Revisited, Surf. Sci. Rep., 2002, 47, p 33–91

    Article  Google Scholar 

  21. S. Tanuma, C.J. Powell, and D.R. Penn, Calculations of Electron Inelastic Mean Free Paths. V. Data for 14 Organic Compounds Over the 50-2000 eV Range, Surf. Interface Anal., 1994, 21, p 165–176

    Article  Google Scholar 

  22. K.R. Birdwhistell, T.L. Tonker, and J.L. Templeton, Transformation of a Tungsten(0) Alkyne to a Tungsten(II) Alkyne via Vinylidne, Carbyne, and Ketenyl Ligands, J. Am. Chem. Soc., 1985, 107, p 4474–4483

    Article  Google Scholar 

  23. A.E. Metcalfe, The Mutual Solid Solubility of Tungsten Carbide and Titanium Carbide, J. Inst. Met., 1947, 73, p 591–599

    Google Scholar 

  24. B. Lönnberg, Thermal Expansion Studies on the Subcarbides of Group V and VI, Transition Metals, J. Less-Common Met., 1986, 120, p 135–146

    Article  Google Scholar 

  25. A.W. Hull, X-ray Crystal Analysis of Thirteen Common Metals, Phys. Rev., 1921, 17, p 571–588

    Article  Google Scholar 

  26. N.C. Halder and C.N.J. Wagner, Separation of Particle Size and Lattice Strain in Integral Breadth Measurements, Acta Cryst., 1966, 20, p 312–313

    Article  Google Scholar 

  27. K.L. Hakansson, H.I.P. Johansson, and L.I. Johansson, High Resolution Core-Level Study of Hexagonal WC(0001), Phys. Rev. B, 1994, 49, p 2035–2039

    Article  Google Scholar 

  28. J.F. van der Veen, F.J. Himpsel, and D.E. Eastman, Chemisorption-Induced 4f-core-electron Binding-Energy Shifts for Surface Atoms of W(111), W(100), and Ta(111), Phys. Rev. B, 1982, 25, p 7388–7397

    Article  Google Scholar 

  29. G. Hollinger, T. Minh Duc, and E. Deneuville, Charge Transfer in Amorphous Colored WO3 Films Observed by X-ray Photoelectron Spectroscopy, Phys. Rev. Lett., 1976, 37, p 1564–1567

    Article  Google Scholar 

  30. J. Luthin and Ch Linsmeier, Carbon Films and Carbide Formation on Tungsten, Surf. Sci., 2000, 454–456, p 78–82

    Article  Google Scholar 

  31. K.P. Fears, D.Y. Petrovykh, and T.D. Clark, Evaluating Protocols and Analytical Methods for Peptide Adsorption Experiments, Biointerphases, 2013, 8, p 1–15

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Office of Naval Research (ONR) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Kolel-Veetil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolel-Veetil, M.K., Goswami, R., Fears, K.P. et al. Formation and Stability of Metastable Tungsten Carbide Nanoparticles. J. of Materi Eng and Perform 24, 2060–2066 (2015). https://doi.org/10.1007/s11665-015-1476-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1476-3

Keywords

Navigation