Skip to main content
Log in

An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effect of friction stir welding (FSW) on microstructure and creep properties of oxide dispersion strengthened (ODS) alloy MA754 were investigated. Fine-grained microstructure developed in the weld zone. TEM results showed some degree of particle agglomeration as a result of intense material flow. Creep tests of the FSW material were carried out at 973 and 1073 K. Power law creep behaviour was observed with stress exponent values of 6.9 and 6.3 at 973 and 1073 K, respectively. The results were compared to those of the as-received material. Creep resistance of FSW material was lower than that of as-received material associated with significantly reduced threshold stress. Post-weld annealing was carried out at 1598 K for 1 h. The heat treatment resulted in a coarse-grained microstructure and enhanced the creep resistance of the welded material. The creep data were compared with those of ODS Ni-Cr alloys in literature. The analysis shows the threshold stress of ODS alloys to be grain size- and temperature-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Alamo, V. Lambard, X. Averty, and M.H. Mathon, Assessment of ODS-14%Cr Ferritic Alloy for High Temperature Applications, J. Nucl. Mater., 2004, 329–333, p 333–337

    Article  Google Scholar 

  2. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara, Tensile and Creep Properties of An Oxide Dispersion-Strengthened Ferritic Steel, J. Nucl. Mater., 2002, 307–311, p 773–777

    Article  Google Scholar 

  3. E. Arzt and P. Grahle, High Temperature Creep Behavior of Oxide Dispersion Strengthened NiAl Intermetallics, Acta Mater., 1998, 46, p 2717–2727

    Article  Google Scholar 

  4. J. Cadek, Z. Zhu, and K. Milicka, Threshold Creep Behaviour of Aluminium Dispersion Strengthened by Fine Alumina Particles, Mater. Sci. Eng. A, 1998, 252, p 1–5

    Article  Google Scholar 

  5. J.H. Schröder and E. Arzt, Weak Beam Studies of Dislocation/Dispersoid Interaction in an Ods Superalloy, Scr. Metall., 1985, 19, p 1129–1134

    Article  Google Scholar 

  6. J. Lin and O.D. Sherby, Creep of Oxide Dispersion Strengthened Materials (with Reference to T-D Nichrome), Res Mech., 1981, 2, p 251–293

    Google Scholar 

  7. A.K. Mukherjee, J.E. Bird, and J.E. Dorn, Experimental Correlations for High Temperature Creep, Trans. Am. Soc. Met., 1969, 62, p 155–179

    Google Scholar 

  8. K.R. Williams and B. Wilshire, On the Stress- and Temperature-Dependence of Creep of Nimonic 80A, Met Sci J, 1973, 7, p 176–179

    Article  Google Scholar 

  9. V.C. Nardone and J.K. Tien, Pinning of Dislocations on the Departure Side of Strengthening Dispersoids, Scr. Metall., 1983, 17, p 467–470

    Article  Google Scholar 

  10. M.G. McKimpson, E.L. Pohlenz, and S.R. Thompson, Evaluating the Mechanical Properties of Commercial DRA, JOM, 1993, 45, p 26–29

    Article  Google Scholar 

  11. M.H. Mathon, V. Klosek, Y. de Carlan, and L. Forest, Study of PM2000 Microstructure Evolution Following FSW Process, J. Nucl. Mater., 2009, 386–388, p 475–478

    Article  Google Scholar 

  12. C.L. Chen, P. Wang, and G.J. Tatlock, Phase Transformations in Yttrium-Aluminium Oxides in Friction Stir Welded and Recrystallised PM2000 Alloys, Mater. High Temp., 2009, 26, p 299–303

    Google Scholar 

  13. C.L. Chen, G.J. Tatlock, and A.R. Jones, Microstructural Evolution in Friction Stir Welding of Nanostructured ODS Alloys, J. Alloys Compd., 2010, 504, p S460–S466

    Article  Google Scholar 

  14. S. Noh, R. Kasada, A. Kimura, S.H.C. Park, and S. Hirano, Microstructure and Mechanical Properties of Friction Stir Processed ODS Ferritic Steels, J. Nucl. Mater., 2011, 417, p 245–248

    Article  Google Scholar 

  15. M.A. Miodownik, A.J. Wilkinson, and J.W. Martin, On the Secondary Recrystallisation of MA754, Acta Mater., 1998, 46, p 2809–2821

    Article  Google Scholar 

  16. J.D. Whittenberger, Creep and Tensile Properties of Several Oxide Dispersion Strengthened Nickel Base Alloys, Metall. Trans. A, 1977, 8, p 1155–1163

    Article  Google Scholar 

  17. P. Shahinian and K. Sadananda, Fatigue and Creep Crack Growth in Oxide Dispersion Strengthened INCONEL MA-754, Metall. Trans. A, 1990, 21, p 177–187

    Article  Google Scholar 

  18. J. Wang, W. Yuan, R.S. Mishra, and I. Charit, Microstructure and Mechanical Properties of Friction Stir Welded Oxide Dispersion Strengthened Alloy, J. Nucl. Mater., 2013, 432, p 274–280

    Article  Google Scholar 

  19. J. Wang, W. Yuan, R.S. Mishra, and I. Charit, Microstructural Evolution and Mechanical Properties of Friction Stir Welded ODS Alloy MA754, J. Nucl. Mater., 2013, 442, p 1–6

    Article  Google Scholar 

  20. K. Monma, H. Suto, and H. Oikawa, High-Temperature Creep of Nickel-Chromium Alloys (on the Relation Between High-Temperature Creep and Diffusion in Nickel Base Solid Solutions, IV), J. Jpn. Inst. Met., 1964, 28, p 253–258

    Google Scholar 

  21. R.S. Mishra, A.G. Paradkar, and K.N. Rao, Steady State Creep Behaviour of a Rapidly Solidified and Further Processed Al-5 wt.% Ti Alloy, Acta Metall. Mater., 1993, 41, p 2243–2251

    Article  Google Scholar 

  22. J.H. Hausselt and W.D. Nix, Dislocation Structure of Ni-20Cr-2ThO2 After High Temperature Deformation, Acta Metall., 1977, 25, p 595–607

    Article  Google Scholar 

  23. T.E. Howson, J.E. Stulga, and J.K. Tien, Creep and Stress Rupture of Oxide Dispersion Strengthened Mechanically Alloyed Inconel Alloy MA 754, Metall. Trans. A, 1980, 11, p 1599–1607

    Article  Google Scholar 

  24. J.J. Stephens and W.D. Nix, The Effect of Grain Morphology on Longitudinal Creep Properties of INCONEL MA 754 at Elevated Temperatures, Metall. Trans. A, 1985, 16, p 1307–1324

    Article  Google Scholar 

  25. R.W. Lund and W.D. Nix, High Temperature Creep of Ni-20Cr-2ThO2 Single Crystals, Acta Metall., 1976, 24, p 469–481

    Article  Google Scholar 

  26. V.C. Nardone, D.E. Matejczyk, and J.K. Tien, The Threshold Stress and Departure Side Pinning of Dislocations by Dispersoids, Acta Metall., 1984, 32, p 1509–1517

    Article  Google Scholar 

  27. D.J. Srolovitz, R.A. Petkovic-Luton, and M.J. Luton, Diffusional Relaxation of the Dislocation-Inclusion Repulsion, Philos. Mag. A, 1983, 48, p 795–809

    Article  Google Scholar 

  28. E. Arzt and D.S. Wilkinson, Threshold Stresses for Dislocation Climb Over Hard Particles: The Effect of an Attractive Interaction, Acta Metall., 1986, 34, p 1893–1898

    Article  Google Scholar 

  29. R.S. Mishra, T.K. Nandy, and G.W. Greenwood, The Threshold Stress for Creep Controlled by Dislocation-Particle Interaction, Philos. Mag. A, 1994, 69, p 1097–1109

    Article  Google Scholar 

  30. B.A. Wilcox and A.H. Clauer, The Role of Grain Size and Shape in Strengthening of Dispersion Hardened Nickel Alloys, Acta Metall., 1972, 20, p 743–757

    Article  Google Scholar 

  31. R.D. Kane and L.J. Ebert, Creep Deformation of TD-Nickel Chromium, Metall. Trans. A, 1976, 7, p 133–137

    Article  Google Scholar 

  32. J.K. Gregory, J.C. Gibeling, and W.D. Nix, High Temperature Deformation of Ultra-Fine-Grained Oxide Dispersion Strengthened Alloys, Metall. Trans. A, 1985, 16, p 777–787

    Article  Google Scholar 

  33. T.C. Totemeier, T.M. Lillo, and J.A. Simpson, Elevated Temperature Strength of Fine-Grained INCONEL Alloy MA754, Metall. Trans. A, 2005, 36, p 2552–2555

    Article  Google Scholar 

  34. J.J. Stephens and W.D. Nix, Constrained Cavity Growth Models of Longitudinal Creep of ODS Alloys, Metall. Trans. A, 1986, 17A, p 281–293

    Article  Google Scholar 

  35. J. Čadek, K. Kuchařová, and S.J. Zhu, Disappearance of the True Threshold Creep Behaviour of an ODS Al-30SiCp Composite at High Temperatures, Mater. Sci. Eng. A, 2000, 281, p 162–168

    Article  Google Scholar 

  36. S.P. Deshmukh, R.S. Mishra, and K.L. Kendig, Creep Behavior and Threshold Stress of an Extruded Al-6Mg-2Sc-1Zr Alloy, Mater. Sci. Eng. A, 2004, 381, p 381–385

    Article  Google Scholar 

  37. D.J. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, and W.D. Nix, Diffusionally Modified Dislocation-Particle Elastic Interactions, Acta Metall., 1984, 32, p 1079–1088

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. James Cole of the Idaho National Laboratory for providing the material used in this study. This work was partially supported by the Department of Energy Grant # DE-FG07-08ID14925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yuan, W., Mishra, R.S. et al. An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy. J. of Materi Eng and Perform 23, 3159–3164 (2014). https://doi.org/10.1007/s11665-014-1092-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1092-7

Keywords

Navigation