Skip to main content
Log in

Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work investigates microbiologically influenced corrosion of API 5L X52 linepipe steel by a sulfate-reducing bacteria (SRB) consortium. The SRB consortium used in this study was cultivated from a sour oil well in Louisiana, USA. 16S rRNA gene sequence analysis indicated that the mixed bacterial consortium contained three phylotypes: members of Proteobacteria (Desulfomicrobium sp.), Firmicutes (Clostridium sp.), and Bacteroidetes (Anaerophaga sp.). The biofilm and the pits that developed with time were characterized using field emission scanning electron microscopy (FE-SEM). In addition, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that extensive localized corrosion activity of SRB is due to a formed biofilm in conjunction with a porous iron sulfide layer on the metal surface. X-ray diffraction (XRD) revealed semiconductive corrosion products predominantly composed of a mixture of siderite (FeCO3), iron sulfide (Fe x S y ), and iron (III) oxide-hydroxide (FeOOH) constituents in the corrosion products for the system exposed to the SRB consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion, Wiley, Hoboken, NJ, 2007

    Book  Google Scholar 

  2. R. Bhola, S.M. Bhola, B. Mishra, and D.L. Olson, Microbiologically Influenced Corrosion and Its Mitigation: A Review, Mater. Sci. Res. India, 2010, 7(2), p 407–412

    CAS  Google Scholar 

  3. R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight, Springer, London, 2008

    Google Scholar 

  4. W.A. Hamilton, Sulfate-Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, p 195–217

    Article  CAS  Google Scholar 

  5. M. Bethencourt, F. Botana, and M. Cano, Biocorrosion of Carbon Steel Alloys by an Hydrogenotrophic Sulfate-Reducing Bacterium Desulfovibrio Capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci., 2006, 48, p 2417–2431

    Article  Google Scholar 

  6. M. Madigan, Brock Biology of Microorganisms, 12th ed., Pearson Benjamin Cummings, San Francisco, 2009

    Google Scholar 

  7. F.M. AlAbbas, C. Williamson, S.M. Bhola, J.R. Spear, D.L. Olson, B. Mishra, and A.E. Kakpovbia, Influence of Sulfate Reducing Bacterial Biofilm on Corrosion Behavior of Low-Alloy, High-Strength Steel (API-5L X80), Int. Biodeterior. Biodegrad., 2013, 78, p 34–42

    Article  CAS  Google Scholar 

  8. NACE Standard TM0194-2004, Field Monitoring of Bacterial Growth in Oil and Gas Systems, NACE, Houston, TX, 2004

  9. P.J. Antony, R.K. Singh, R. Mohanram, K. Pradeep, and R. Raman, Influence of Thermal Aging on Sulfate-Reducing Bacteria (SRB)-Influenced Corrosion Behaviour of 2205 Duplex Stainless Steel, Corros. Sci., 2008, 50, p 1858–1864

    Article  CAS  Google Scholar 

  10. D.J. Lane, 16S/23S rRNA Sequencing, Nucleic Acid Techniques in Bacterial Systematics, E. Stackebrandt and M. Goodfellow, Ed., Wiley, Chichester, 1991, p 115–175

    Google Scholar 

  11. J.W. Sahl, N. Fairfield, J. Kirk Harris, D. Wettergreen, W.C. Stone, and J.R. Spear, Novel Microbial Diversity Retrieved by Autonomous Robotic Exploration of the World’s Deepest Vertical Phreatic Sinkhole, Astrobiology, 2010, 10(2), p 201–213

    Article  CAS  Google Scholar 

  12. E. Brent and P. Green, Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities, Genome Res., 1998, 8(3), p 186–194

    Google Scholar 

  13. E. Brent, L. Hillier, M.C. Wendl, and P. Green, Base-Calling of Automated Sequencer Traces Using Phred. I. Accuracy Assessment, Genome Res., 1998, 8(3), p 175–185

    Article  Google Scholar 

  14. D.N. Frank, XplorSeq: A Software Environment for Integrated Management and Phylogenetic Analysis of Metagenomic Sequence Data, BMC Bioinformatics, 2008, 9(1), p 420

    Article  Google Scholar 

  15. P. Elmar, J. Peplies, and F. Oliver Glöckner, SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes, Bioinformatics, 2012, 28(14), p 1823–1829

    Article  Google Scholar 

  16. P. Elmar, C. Quast, K. Knittel, B.M. Fuchs, W. Ludwig, J. Peplies, and F. Oliver Glöckner, SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB, Nucleic Acids Res., 2007, 35(21), p 7188–7196

    Article  Google Scholar 

  17. W. Ludwig, S. Oliver, W. Ralf, R. Lothar, M. Harald, Yadhukumar, B. Arno, et al. ARB: A Software Environment for Sequence Data, Nucleic Acids Res., 2004, 32(4), p 1363–1371

  18. D.A. Benson, K.M. Ilene, D.J. Lipman, J. Ostell, and D.L. Wheeler, GenBank, Nucleic Acids Res., 2005, 33, p D34–D38

    Article  CAS  Google Scholar 

  19. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, Basic Local Alignment Search Tool, J. Mol. Biol., 1990, 215(3), p 403–410

    CAS  Google Scholar 

  20. A. Stamatakis, RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models, Bioinformatics, 2006, 22(21), p 2688–2690

    Article  CAS  Google Scholar 

  21. E.P. Nawrocki, Structural RNA Homology Search and Alignment Using Covariance Models, Washington University, Saint Louis, MO, 2009

    Google Scholar 

  22. N.D. Pattengale, M. Alipour, O.R.P. Bininda-Emonds, B.M.E. Moret, and A. Stamatakis, How Many Bootstrap Replicates are Necessary?, J. Comput. Biol., 2010, 17(3), p 337–354

    Article  CAS  Google Scholar 

  23. D.A. Jones and P.S. Amy, A Thermodynamic Interpretation of Microbiologically Influenced, Corrosion, 2002, 8(8), p 938–945

    Google Scholar 

  24. C. Xua, Y. Zhanga, B. Chenga, and W. Zhub, Pitting Corrosion Behavior of 316L Stainless Steel in the Media of Sulphate-Reducing and Iron-Oxidizing Bacteria, Mater. Charact., 2008, 59(3), p 245–255

    Article  Google Scholar 

  25. ASTM G1-03, Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, ASTM, Philadelphia, PA, 2009, p 17–23

  26. J.Y. Leu, T.C. McGovern, A.R. Porter, and W.A. Hamilton, The Same Species of Sulphate-Reducing Desulfomicrobium Occur in Different Oil Field Environments in the North Sea, Lett. Appl. Microbiol., 1999, 29, p 246–252

    Article  CAS  Google Scholar 

  27. G. Voordouw, J.K. Voordouw, and T.R. Jack, Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing, Appl. Environ. Microbiol., 1992, 58, p 3542–3552

    CAS  Google Scholar 

  28. H. Dahle, F. Garshol, M. Madsen, and N. Birkeland, Microbial Community Structure Analysis of Produced Water from a High-Temperature North Sea Oil-Field, Biomed. Life Sci., 2008, 9, p 37–49

    Google Scholar 

  29. D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann, and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14(7), p 1772–1787

    Article  CAS  Google Scholar 

  30. H. Castaneda and X.D. Benetton, SRB-Biofilm Influenced in Active Corrosion Sites Formed at the Steel-Electrolyte Interface When Exposed to Artificial Seawater Conditions, Corros. Sci., 2008, 50(4), p 1169–1183

    Article  CAS  Google Scholar 

  31. D. Cetin and L. Aksu, Corrosion Behavior of Low-Alloy Steel in the Presence of Desulfotomaculum sp, Corro. Sci., 2009, 51, p 1584–1588

    Article  CAS  Google Scholar 

  32. H. Venzlaff, D. Enning, J. Srinivasan, K.J.J. Mayrhofer, A.W. Hassel, H.F. Widdel, and M. Stratmann, Accelerated Cathodic Reaction in Microbial Corrosion of Iron Due to Direct Electron Uptake by Sulphate Reducing Bacteria, Corros. Sci., 2013, 66, p 88–96

    Google Scholar 

  33. F.M. AlAbbas, J.R. Spear, A. Kakpovbia, N.M. Balhareth, D.L. Olson, and B. Mishra, Bacterial Attachment to Metal Substrate and Its Effects on Microbiologically-Influenced Corrosion in Transporting Hydrocarbon Pipelines, J. Pipeline Eng., 2012, 2(1), p 63–72

    Google Scholar 

  34. R.G.J. Edyvean, Hydrogen Sulphide—A Corrosive Metabolite, Int. Biodeterior., 1991, 27, p 109–120

    Article  CAS  Google Scholar 

  35. F. Kuanga, J. Wang, L. Yana, and D. Zhanga, Effects of Sulfate-Reducing Bacteria on the Corrosion Behavior of Carbon Steel, Electrochim. Acta, 2007, 52, p 6084–6088

    Article  Google Scholar 

  36. T. Liu, H. Liu, Y. Hu, L. Zhou, and B. Zheng, Growth Characteristics of Thermophile Sulfate-Reducing Bacteria and its Effect on Carbon Steel, Mater. Corros., 2009, 60(3), p 218–224

    Article  CAS  Google Scholar 

  37. W. Lee, Z. Lewandowski, P.H. Nielsen, and W.A. Hamilton, Role of Sulfate-Reducing Bacteria in Corrosion of Mild Steel: A Review, Biofouling, 1995, 8, p 165–194

    Article  CAS  Google Scholar 

  38. R.A. King and J.D. Miller, Corrosion by Sulfate Reducing Bacteria, Nature, 1971, 233, p 491–492

    Article  CAS  Google Scholar 

  39. E. Robert, R. Hill, and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publication, Boston, 1992

    Google Scholar 

  40. ASM Handbook Volume 13 A, Corrosion: Fundamentals, Testing and Protection, ASM International, Materials Park, OH

  41. O.R. Monroy, M.H. Gayosso, N. Ordaz, G. Olivares, and C.J. Ramírez, Corrosion of API, XL 52 Steel in Presence of Clostridium Celerecrescens, Mater. Corros., 2011, 62(9), p 878–883

    Article  CAS  Google Scholar 

  42. S.M. Bhola, R. Bhola, B. Mishra, and D.L. Olson, Electrochemical Impedance Spectroscopic Characterization of the Oxide Film Formed over Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in Phosphate Buffer Saline at Various Potentials, J. Mater. Sci., 2010, 45(22), p 6179–6186

    Article  CAS  Google Scholar 

  43. S.M. Bhola, R. Bhola, L. Jain, B. Mishra, and D.L. Olson, Corrosion Behavior of Mild Carbon Steel in Ethanolic Solutions, J. Mater. Eng. Perform., 2011, 20(3), p 409–416

    Article  CAS  Google Scholar 

  44. J.F.D. Stott, What Progress in the Understanding of Microbially Induced Corrosion Has Been Made in the Last 25 Years? A Personal Viewpoint, Corrosion Sci., 1993, 35(1-4), p 667–673

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge and appreciate the Saudi Aramco and Inspection Department Management for their continual support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal M. AlAbbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlAbbas, F.M., Williamson, C., Bhola, S.M. et al. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field. J. of Materi Eng and Perform 22, 3517–3529 (2013). https://doi.org/10.1007/s11665-013-0627-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0627-7

Keywords

Navigation