Skip to main content
Log in

Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A computational fluid dynamics (CFD) model is presented for simulating the material flow and heat transfer in the friction stir welding (FSW) of 6061-T6 aluminum alloy (AA6061). The goal is to utilize the 3-D, numerical model to analyze the viscous and inertia loads applied to the FSW tool by varying the welding parameters. To extend the FSW process modeling, in this study, the temperature-dependant material properties as well as the stick/slip condition are considered where the material at the proximity of the FSW tool slips on the lower pressure regions. A right-handed one-way thread on a tilted FSW tool pin with a smooth, concaved shoulder is, additionally, considered to increase the accuracy of the numerical model. In addition, the viscous and frictional heating are assumed as the only sources of heat input. In the course of model verification, good agreements are found between the numerical results and the experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.T. Smith, and C.J. Dawes, International Patent No. PCT/GB92/02203, GB Patent No. 9125978.8 (1991), US Patent No. 5,460,317 (1995)

  2. J.H. Ouyang and R. Kovacevic, 2002 Material Flow and Microstructure in the Friction Stir Butt Welds of the Same and Dissimilar Aluminum Alloys, J. Mater. Eng. Perfom. 11(1), 51–63

    Article  CAS  Google Scholar 

  3. W.J. Arbegast, 2006 Friction Stir Welding After a Decade of Development, Weld. J., 85(3), 28–35

    CAS  Google Scholar 

  4. H.R. Shercliff, J. Michael, M.J. Russell, A. Taylor, and T.L. Dickerson, 2005 Microstructural Modeling in Friction Stir Welding of 2000 Series Aluminum Alloys, Mec. Indust., 6, 25–35

    Google Scholar 

  5. Y.S. Sato, S·H. Park, and H. Kokawa, 2001 Microstructural Factors Governing Hardness in Friction Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 32, 3033

    Article  Google Scholar 

  6. T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction Stir Welding Studies on Mild Steel, Weld. J., 2003, p 1–9

  7. P.A. Colegrove, H.R. Shercliff 2004 Development of Trivex Friction Stir Welding Tool, Part 1—Two-Dimensional Flow Modeling and Experimental Validation, Sci. Technol. Weld. Join., 9(4), 345–351

    Article  CAS  Google Scholar 

  8. Y.J. Chao, X. Qi, W. Tang 2003 Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies, J. Manuf. Sci. Eng., 125, 138–145

    Article  Google Scholar 

  9. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux, 2006 Mechanical and Thermal Modeling of Friction Stir Welding, J. Mater. Process. Technol., 171, 348–357

    Article  CAS  Google Scholar 

  10. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes 2003 Flow Patterns During Friction Stir Welding, Mater. Charact., 49, 95–101

    Article  Google Scholar 

  11. B. London, M. Mahoney, W. Bingel, M. Calabrese, and D. Waldron, Experimental Methods for Determining Material Flow in Friction Stir Welds, Presented at the 3rd International Symposium on Friction Stir Welding (Kobe, Japan), Sep 2001, p 4–7

  12. K. Colligan 1999 Material Flow Behavior During Friction Stir Welding of Aluminum, Weld. J., 75(7), 229–237

    Google Scholar 

  13. L. Ke, X. Li, and J.E. Indacochea 2004 Material Flow Patterns and Cavity Model in Friction-Stir Welding of Aluminum Alloys, Metall. Mater. Trans. B, 35, 153–160

    Article  Google Scholar 

  14. T.U. Seidel and A.P. Reynolds 2001 Visualization of Material Flow in AA2195 Friction Stir Welds Using a Marker Insert Technique, Metall. Mater. Trans. A, 37, 2879–2884

    Article  Google Scholar 

  15. P.A. Colegrove and H.R. Shercliff, 2005. 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 169, 320–327

    Article  CAS  Google Scholar 

  16. R. Nandan, G.G. Roy, T. DebRoy 2006 Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metall. Mater. Trans. A, 37, 1247–1259

    Article  Google Scholar 

  17. S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, 2001 Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Welding Joining, 6(3), 191–193

    Article  Google Scholar 

  18. R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, and M.A. Stremler 2006. Experimental Defect Analysis and Force Prediction Simulation of High Weld Pitch Friction Stir Welding, Sci. Technol. Welding Joining, 11(6), 657–665

    Article  Google Scholar 

  19. C. Chen and R. Kovacevic, 2004 Thermomechanical Modelling and Force Analysis of Friction Stir Welding by the Finite Element Method, Proc. IME C J. Mech. Eng. Sci., 218(5), 509–519

    Article  Google Scholar 

  20. R. Johnson, Forces in Friction Stir Welding of Aluminum Alloys, Presented at the 3rd International Symposium on Friction Stir Welding (Kobe, Japan), Sep 2001, p 6–19

  21. J.W. Pew, “A Torque-Based Weld Power Model for Friction Stir Welding”, M.Sc. Thesis, Brigham Young University, 2006

  22. D. Jandric, M. Chen, M. Valant, and R. Kovacevic, Characterization of Weld Quality by Different Sensing Techniques in Friction Stir Welding of Lap Joints, Presented at 4th International Symposium on Friction Stir Welding (Park City, Utah), May 2003, p 6

  23. R.R. Itharaju, “Friction Stir Processing of Aluminum Alloys,” M.Sc. Thesis, University of Kentucky, 2004

  24. Y.T. Chew, M. Cheng, and S·C. Luo, 1995 A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme, J. Fluid Mech., 299, 35–71

    Article  Google Scholar 

  25. S. Mittal, B. Kumar, 2003 Flow Past a Rotating Cylinder, J. Fluid Mech., 476, 303–334

    Article  Google Scholar 

  26. O·C. Zienkiewicz, P·C. Jain, and E. Onate, 1978. Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions, Int. J. Solid Struct., 14, 15–38

    Article  Google Scholar 

  27. W.J. Arbegast, Modeling Friction Stir Joining as a Metalworking Process, Proceedings of Symposium on Hot Deformation of Aluminum Alloys III, March 2-6, 2003 (San Diego, California), TMS, p 313–327

  28. N. Cristescu and I. Suliciu, Viscoplasticity (Mechanics of Plastic Solids). Kluwer Academic Publishers, Dordrecht, 1982

  29. P. Dong, F. Lu, J.K. Hong, and Z. Cao, 2001. Coupled Thermomechanical Analysis of Friction Stir Welding Process Using Simplified Models, Sci. Technol. Welding Joining, 6(5), 281–287

    Article  CAS  Google Scholar 

  30. T. Sheppard and D.S. Wright, Determination of Flow Stress I-Constitutive Equation for Aluminum Alloys at Elevated Temperatures. II-Radial and Axial Temperature Distribution During Torsion Testing, Met. Tech., 1979, 6, 215–229

    Article  CAS  Google Scholar 

  31. T. Sheppard, A. Jackson, 1979 Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminum Alloys, Mater. Sci. Tech., 13(3), 203–209

    Article  Google Scholar 

  32. R.I. Tanner, Engineering Rheology, 2nd ed., Oxford University Press, May 2000

  33. W. Zhang, G.G. Roy, J. Elmer, and T. DebRoy, 2003 Modeling of Heat Transfer and Fluid Flow During Gas Tungsten Arc Spot Welding of Low Carbon Steel, J. Appl. Phys., 93(5), 3022–3033

    Article  CAS  Google Scholar 

  34. H·N.B. Schmidt, J. Hattel, 2004 Heat Sources Models in Simulation of Heat Flow in Friction Stir Welding, Int. J. Offshore Polar Eng., 14(4), 296–304

    Google Scholar 

  35. M. Song, R. Kovacevic, 2004 Heat Transfer Modelling for Both Workpiece and Tool in the Friction Stir Welding Process: A Coupled Model, Proc. IME. B J. Eng. Manufact., 218(1), 17–33

    Article  Google Scholar 

  36. H. Atharifar and R. Kovacevic, Computational Study on the Qualitative Effect of Process Parameters on the Forces and Torque Applied to the Tool in Friction Stir Welding, Presented at ASME GSRIC Conference (Tulsa, OK), April 2007

  37. H. Atharifar and R. Kovacevic, Numerical Study of the Tool Rake Angle Affect on the Material Flow in Friction Stir Welding Process, Presented at ASME International Mechanical Engineering Congress and Exposition (Seattle, WA), Nov 2007

  38. L.F. Mondolfo 1976. Aluminum Alloys: Structure and Properties. Butterworth & Co., Boston, MA, pp 717–857

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Research Center for Advanced Manufacturing (RCAM) at Southern Methodist University and partially supported by Millersville University of Pennsylvania. Authors would like to thank Dr. B. Antohe at MicroFab Inc. for thoughtful insights and for assistance in preparing the 3-D grid of the solution domain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Atharifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atharifar, H., Lin, D. & Kovacevic, R. Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding. J. of Materi Eng and Perform 18, 339–350 (2009). https://doi.org/10.1007/s11665-008-9298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9298-1

Keywords

Navigation