Skip to main content

Advertisement

Log in

DFT Study of Structural and Electronic Properties of MgZnO Alloy

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural and electronic properties of magnesium zinc oxide alloy with different Mg content and different configurations are studied by density functional theory. The energy track of rocksalt and wurtzite phases of MgZnO with different Mg content indicates that below 63% the wurtzite phase is energetically stable and above 63% the rocksalt phase is stable. Distribution of Mg in the MgZnO alloy is important to understand the phase segregation. By analyzing the distribution of Mg in the MgZnO alloy, we find that the energy required for two Mg to stay together is slightly larger than that for two Mg to stay apart, meaning that Mg has the potential to be uniformly distributed in the MgZnO alloy. By comparing with other dopants, we find that Mg introduces smaller lattice distortion. The corresponding electronic properties are studied by analyses of the density of state and the band structure. From the decomposed-projected band structure, we find that the energy level of O 2p orbitals is modulated to lower energy by introducing Mg, indicating that the enlargement of the band gap is partly caused by the subsidence of the valence band. For comparison, Cd modulates O 2p orbitals to a higher energy level, consistent with the presence of a narrow band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Asahara, D. Takamizu, A. Inokuchi, M. Hirayama, A. Teramoto, S. Saito, M. Takahashi, and T. Ohmi, Thin Solid Films 518, 2953–2956 (2010).

    Article  CAS  Google Scholar 

  2. H. Tanaka, S. Fujita, and S. Fujita, Appl. Phys. Lett. 86, 192911 (2005).

    Article  Google Scholar 

  3. K. Matsuyama, N. Ihsan, K. Irie, K. Mishima, T. Okuyama, and H. Muto, J. Colloid Interface Sci. 399, 19–25 (2013).

    Article  CAS  Google Scholar 

  4. J.F. Sarver, F.L. Katnack, and F.A. Hummel, J. Electrochem. Soc. 106, 960–963 (1959).

    Article  CAS  Google Scholar 

  5. F. Alema, O. Ledyaev, R. Miller, V. Beletsky, A. Osinsky, and W.V. Schoenfeld, J. Cryst. Growth 435, 6–11 (2016).

    Article  CAS  Google Scholar 

  6. R.W. Shao, K. Zheng, B. Wei, Y.F. Zhang, Y.J. Li, X.D. Han, Z. Zhang, and J. Zou, Nanoscale 6, 4936–4941 (2014).

    Article  CAS  Google Scholar 

  7. W.V. Schoenfeld, M. Wei, R.C. Boutwell, and H.Y. Liu, in Oxide-Based Materials and Devices V. 8987, 89871 (2014).

  8. L.K. Wang, Z.G. Ju, J.Y. Zhang, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, and C.X. Shan, Appl. Phys. Lett. 95, 131113 (2009).

    Article  Google Scholar 

  9. W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, and H. Shen, Appl. Phys. Lett. 82, 3424–3426 (2003).

    Article  CAS  Google Scholar 

  10. M. Wei, R.C. Boutwell, J.W. Mares, A. Scheurer, and W.V. Schoenfeld, Appl. Phys. Lett. 98, 261913 (2011).

    Article  Google Scholar 

  11. P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).

    Article  Google Scholar 

  12. P. Erhart, A. Klein, and K. Albe, Phys. Rev. B 72, 052104 (2005).

    Article  Google Scholar 

  13. X. Chen and J. Kang, Semicond. Sci. Technol. 23, 025008 (2008).

    Article  Google Scholar 

  14. M. Sanati, G.L.W. Hart, and A. Zunger, Phys. Rev. B 68, 155210 (2003).

    Article  Google Scholar 

  15. G. Kresse and J. Hafner, Phys. Rev. B Condens. Matter 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  16. G. Kresseand and D. Joubert, Phys. Rev. B 59, 1758 (1995).

    Article  Google Scholar 

  17. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  18. P.J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  19. B. Hammer, L.B. Hansen, and J.K. Nørskov, Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  20. S. Wei and A. Zunger, Phys. Rev. B Condens. Matter 37, 8958–8981 (1988).

    Article  CAS  Google Scholar 

  21. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreysand, and A.P. Sutton, Phys. Rev. B 57, 1505 (1995).

    Article  Google Scholar 

  22. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  23. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B 79, 115407 (2009).

    Article  Google Scholar 

  24. J.L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge National Natural Science Foundations of China (Grant No. 51907171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wang or Huahan Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Yao, H., Wang, H. et al. DFT Study of Structural and Electronic Properties of MgZnO Alloy. J. Electron. Mater. 49, 4569–4576 (2020). https://doi.org/10.1007/s11664-020-08066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08066-1

Keywords

Navigation