Skip to main content

Advertisement

Log in

Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural and optoelectronic properties of a MoS2-based heterostructure with a MoS2 monolayer stacked on a ZnO monolayer (g-ZnO) are calculated by first-principle simulations. MoS2/g-ZnO is a typical type II, indirect-bandgap van der Waals heterostructure. With the coupling interaction in the MoS2/g-ZnO heterostructure, the bandgap reduces with respect to both individual sheets, resulting in broadening of the absorption edges towards visible and near-infrared regions. For application in water splitting, the energy levels of the conduction-band minimum and valence-band maximum of the heterostructure are respectively high enough for water reduction and low enough for water oxidation, making this a promising functional material. For the MoS2 monolayer, the photocatalyst efficiency is limited by the high recombination rate of photogenerated electron–hole pairs. On the contrary, for the MoS2/g-ZnO van der Waals heterostructure, a large built-in electric field is formed at the interface, effectively facilitating separation of photogenerated electron–hole pairs and promoting its photocatalytic efficiency. This indicates that such MoS2/g-ZnO van der Waals heterostructures possess great prospects for application in photocatalytic and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Rhys. 81, 109 (2009).

    CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  4. S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).

    Article  CAS  Google Scholar 

  5. F.A. Rasmussen and K.S. Thygesen, J. Phys. Chem. C 119, 13169 (2015).

    Article  CAS  Google Scholar 

  6. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  7. T. Cheiwchanchamnangij and W.R. Lambrecht, Phys. Rev. B Condens. Matter Mater. Phys. 85, 205302 (2012).

    Article  Google Scholar 

  8. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. A.B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Energy Environ. Sci. 5, 5577 (2012).

    Article  CAS  Google Scholar 

  10. H.L. Zhuang and R.G. Henning, J. Phys. Chem. C 117, 20440 (2013).

    Article  CAS  Google Scholar 

  11. T. Musso, P.V. Kumar, A.S. Foster, and J.C. Grossman, ACS Nano 8, 11432 (2014).

    Article  CAS  Google Scholar 

  12. K. Kósmider and J. Fernández-Rossier, Phys. Rev. B Condens. Matter Mater. Phys. 87, 075451 (2013).

    Article  Google Scholar 

  13. R. Gillen, J. Robertson, and J. Maultzsch, Phys. Rev. B Condens. Matter Mater. Phys. 90, 075437 (2014).

    Article  Google Scholar 

  14. W. Hu, T. Wang, and J. Yang, J. Mater. Chem. C 3, 4756 (2015).

    Article  CAS  Google Scholar 

  15. M. Sun, J.-P. Chou, Q. Ren, Y. Zhao, J. Yu, and W. Tang, Appl. Phys. Lett. 110, 173105 (2017).

    Article  Google Scholar 

  16. Q.H. Ta, L. Zhao, D. Pohl, J. Pang, B. Trzebicka, B. Rellinghaus, D. Pribat, T. Gemming, Z. Liu, A. Bachmatiuk, and H.M. Rümmeli, Crystals 6, 100 (2016).

    Article  Google Scholar 

  17. B.N. Pal, B.M. Dhar, K.C. See, and H.E. Katz, Nat. Mater. 8, 898 (2009).

    Article  CAS  Google Scholar 

  18. Z.C. Tu, J. Comput. Theor. Nanosci. 7, 1182 (2010).

    Article  CAS  Google Scholar 

  19. C.L. Freeman, F. Claeyssens, N.L. Allan, and J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006).

    Article  Google Scholar 

  20. C. Tusche, H.L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007).

    Article  CAS  Google Scholar 

  21. J. Lee, D.C. Sorescu, and X. Deng, J. Phys. Chem. Lett. 7, 1335 (2016).

    Article  CAS  Google Scholar 

  22. Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, J. Appl. Phys. 116, 064305 (2014).

    Article  Google Scholar 

  23. Y.-J. Yuan, F. Wang, B. Hu, H.-W. Lu, Z.-T. Yu, and Z.-G. Zou, Dalton Trans. 44, 10997 (2015).

    Article  CAS  Google Scholar 

  24. F. Xue, L.B. Chen, J. Chen, J.B. Liu, L.F. Wang, M.X. Chen, Y.K. Pang, X.N. Yang, G.Y. Gao, J.Y. Zhai, and Z.L. Wang, Adv. Mater. 28, 3391 (2016).

    Article  CAS  Google Scholar 

  25. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  26. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).

    Article  CAS  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  28. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  29. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  30. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  31. T. Kerber, M. Sierka, and J. Sauer, J. Comput. Chem. 29, 2088 (2008).

    Article  CAS  Google Scholar 

  32. H.J. Monkhorst and J.D. Pack, Phys. Rev. B: Solid State. 13, 5188 (1976).

    Article  Google Scholar 

  33. P. Lu, X. Wu, W. Guo, and X.C. Zeng, Phys. Chem. Chem. Phys. 14, 13035 (2012).

    Article  CAS  Google Scholar 

  34. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, and G.U. Sumanasekera, Science 318, 1424 (2007).

    Article  CAS  Google Scholar 

  35. E. Benavente, F. Durán, C. Sotomayor-Torres, and G. González, J. Phys. Chem. Solids 113, 119 (2008).

    Article  Google Scholar 

  36. W. Tang, E. Sanville, and G. Henkelman, J. Phys. Condens. Matter 21, 84204 (2009).

    Article  CAS  Google Scholar 

  37. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

    Article  Google Scholar 

  38. E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huahan Zhan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Yao, Q., Wang, H. et al. Optoelectronic Properties of MoS2/g-ZnO van der Waals Heterostructure Investigated by First-Principles Calculations. J. Electron. Mater. 49, 4557–4562 (2020). https://doi.org/10.1007/s11664-020-07997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07997-z

Keywords

Navigation