Skip to main content
Log in

Morphology, Crystal Structure and Ferromagnetic Resonance Properties of Submicron-Thick Yttrium Iron Garnet Films Prepared by Pulsed Laser Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Submicron-thick yttrium iron garnet films were grown on a gadolinium gallium garnet substrate by pulsed laser deposition. The morphology and crystal structure results show that the submicron-thick film has a flat surface, low surface roughness of ∼ 0.5 ± 0.05 nm and good epitaxy with the (444) plane. Magnetic hysteresis loops also indicate that the submicron-thick film has great soft magnetic properties. However, the ferromagnetic resonance (FMR) spectrum shows that the submicron-thick film has multiple resonance peaks. The angular dependence of the FMR response of the 10-nm-thick, 100-nm-thick and 525-nm-thick films shows that peaks 1 (at low field) and 2 (at high field) observed in the 525-nm-thick film spectrum originate from the internal layer and the outer layer of the films, respectively. Lastly, the angular dependence of the FMR linewidth shows that the lowest FMR linewidth occurred at an angle between the direction of the static field and film normal of 50°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Lang, M. Montazeri, M.C. Onbasli, X.F. Kou, Y.B. Fan, P. Upadhyaya, K.Y. Yao, F. Liu, Y. Jiang, W.J. Jiang, K.L. Wong, G.Q. Yu, J.S. Tang, T.X. Nie, L. He, R.N. Schwartz, Y. Wang, C.A. Ross, and K.L. Wang, Nano Lett. 14, 3459 (2014).

    Article  Google Scholar 

  2. H. Zheng, M.G. Han, L. Zheng, P. Zheng, Q. Wu, L.J. Deng, and H.B. Qin, Appl. Phys. Lett. 107, 062401 (2015).

    Article  Google Scholar 

  3. X.X. Li, J.J. Zhou, J.X. Deng, H. Zheng, L. Zheng, P. Zheng, and H.B. Qin, J. Electron. Mater. 45, 4973 (2016).

    Article  Google Scholar 

  4. K. Ando, S. Watanabe, S. Mooser, E. Saitoh, and H. Sirringhaus, Nat. Mater. 12, 622 (2013).

    Article  Google Scholar 

  5. X.T. Zhou, W.J. Cheng, F.T. Lin, X.M. Ma, and W.Z. Shi, Appl. Surf. Sci. 253, 2108 (2006).

    Article  Google Scholar 

  6. V.G. Harris, A. Geiler, Y.J. Chen, S.D. Yoon, M.Z. Wu, A. Yang, Z.H. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, and C. Vittoria, J. Magn. Magn. Mater. 321, 2035 (2009).

    Article  Google Scholar 

  7. T. Liu, H.C. Chang, V. Vlaminck, Y.Y. Sun, M. Kabatek, A. Hoffmann, L.J. Deng, and M.Z. Wu, J. Appl. Phys. 115, 17A501 (2014).

    Article  Google Scholar 

  8. R. Vidyasagar, O. Alves Santos, J. Holanda, R.O. Cunha, F.L.A. Machado, P.R.T. Ribeiro, A.R. Rodrigues, J.B.S. Mendes, A. Azevedo, and S.M. Rezende, Appl. Phys. Lett. 109, 973 (2016).

    Article  Google Scholar 

  9. V.G. Harris, IEEE Trans. Magn. 48, 1075 (2012).

    Article  Google Scholar 

  10. A. Sposito, T.C. May-Smith, G.B.G. Stenning, P.A.J. de Groot, and R.W. Eason, Opt. Mater. Express 3, 624 (2013).

    Article  Google Scholar 

  11. B. Bhoi, B. Sahu, N. Venkataramani, R.P.R.C. Aiyar, and S. Prasad, IEEE Trans. Magn. 51, 2800704 (2015).

    Article  Google Scholar 

  12. Hillebrands, Phys. Rev. 91, 134407 (2015).

    Article  Google Scholar 

  13. A.K. Srivastava, M.J. Hurben, M.A. Wittenauer, P. Kabos, C.E. Patton, R. Ramesh, P.C. Dorsey, and D.B. Chrisey, J. Appl. Phys. 85, 7838 (1999).

    Article  Google Scholar 

  14. M. Sparka, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 (1961).

    Article  Google Scholar 

  15. M.J. Huiben, D.R. Franklin, and C.E. Patton, J. Appl. Phys. 81, 7458 (1997).

    Article  Google Scholar 

  16. Y.Y. Sun, Y.Y. Song, H.C. Chang, M. Kabatek, M. Jantz, W. Schneider, M.Z. Wu, H. Schultheiss, and A. Hoffomann, Appl. Phys. Lett. 101, 152405 (2012).

    Article  Google Scholar 

  17. E. Popova, N. Keller, F. Gendron, L. Thomas, M.-C. Brianso, M. Guyot, M. Tessier, and S.S.P. Parkin, J. Vac. Sci. Technol. A 19, 2567 (2001).

    Article  Google Scholar 

  18. M.J. Huiben and C.E. Patton, J. Appl. Phys. 83, 4344 (1998).

    Article  Google Scholar 

  19. C. Kittel, Phys. Rev. 73, 161 (1948).

    Google Scholar 

  20. D.L. Mills and S.M. Rezende, Top. Appl. Phys. 87, 27 (2003).

    Article  Google Scholar 

  21. E. Estevez-Rams and H. Leon, J. Magn. Magn. Mater. 320, 246 (2008).

    Article  Google Scholar 

  22. B. Hillebrands and K. Ounadjela, Spin Dynamics in Confined Magnetic Structures (Berlin: Springer, 2006).

    Book  Google Scholar 

  23. A. Azevedo, A.B. Oliveira, F.M. De Aguiar, and S.M. Rezende, Phys. Rev. B 62, 5331 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation of China (grant nos. 51702075, 11704092, 51771176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zheng or Jiang-Xia Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, QW., Zheng, H., Zheng, L. et al. Morphology, Crystal Structure and Ferromagnetic Resonance Properties of Submicron-Thick Yttrium Iron Garnet Films Prepared by Pulsed Laser Deposition. J. Electron. Mater. 48, 4850–4855 (2019). https://doi.org/10.1007/s11664-019-07279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07279-3

Keywords

Navigation