Skip to main content

Advertisement

Log in

Tannic Acid-Assisted Fabrication of N/B-Codoped Hierarchical Carbon Nanofibers from Electrospun Zeolitic Imidazolate Frameworks as Free-Standing Electrodes for High-Performance Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An effective synthetic route has been reported to prepare N/B co-doped hierarchical carbon nanofibers (NB-HCNFs) as free-standing electrodes for high-performance supercapacitors. Zeolitic imidazolate framework (ZIF-8) nanoparticles were embedded into polyacrylonitrile (PAN) through electrospinning to obtain PAN/ZIF-8 nanofibers. Tannic acid (TA) acted as a coating layer for PAN/ZIF-8 to generate hollow ZIF-8 core structures within the fiber and an intermediate to coordinate with 1,4-benzenediboronicacid (BDBA). After carbonization, the obtained flexible N/B co-doped hierarchical porous carbon nanofibers were used as free-standing electrodes for supercapacitors. Thus, unique nanostructure and the existence of heteroatoms could offer remarkably improved electrochemical properties with a high specific capacitance (288.2 F g−1 at a current density of 1 A g−1) and good cycling stability (96.9% capacitance retention over 8000 cycles at 10 A g−1). In addition, the NB-HCNFs films were assembled into symmetric supercapacitors, which displayed a high energy density and excellent stability (99.7% capacitance retention after 8000 cycles at 10 A g−1). The synthetic method might provide an effective and facile strategy to prepare a variety of hierarchical doped carbon nanomaterials for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.H. Cao, Y.M. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, and H. Zhang, Small 7, 3163 (2011).

    Article  Google Scholar 

  2. X.L. Fang, J. Zang, X.L. Wang, M.S. Zheng, and N.F. Zheng, J. Mater. Chem. A 2, 6191 (2014).

    Article  Google Scholar 

  3. J. Tan, Y.L. Han, L. He, Y.X. Dong, X.X. Xu, D.G. Liu, H.W. Yan, Q. Yu, C.Y. Huang, and L.Q. Mai, J. Mater. Chem. A 5, 23620 (2017).

    Article  Google Scholar 

  4. J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, and D.Y. Zhao, Adv. Funct. Mater. 23, 2322 (2013).

    Article  Google Scholar 

  5. Z.L. Wang, R. Guo, G.R. Li, H.L. Lu, Z.Q. Liu, F.M. Xiao, M.Q. Zhang, and Y.X. Tong, J. Mater. Chem. 22, 2401 (2012).

    Article  Google Scholar 

  6. Y.M. Tan, C.F. Xu, G.X. Chen, Z.H. Liu, M. Ma, Q.J. Xie, N.F. Zheng, and S.Z. Yao, ACS Appl. Mater. Interfaces. 5, 2241 (2013).

    Article  Google Scholar 

  7. J.H. Zhong, A.L. Wang, G.R. Li, Y.N. Yang, C. Xu, L.C. Zhou, and Z. Yu, J. Mater. Chem. 22, 5656 (2012).

    Article  Google Scholar 

  8. M.Z. Dai, L.Y. Song, J.T. LaBelle, and B.D. Vogt, Chem. Mater. 23, 2869 (2011).

    Article  Google Scholar 

  9. C. Zhan, P.F. Zhang, S. Dai, and D.E. Jiang, ACS Energy Lett. 1, 1241 (2016).

    Article  Google Scholar 

  10. P.F. Zhang, Z.A. Qiao, Z.Y. Zhang, S. Wan, and S. Dai, J. Mater. Chem. A 2, 12262 (2014).

    Article  Google Scholar 

  11. Z. Zhu, Y. Hu, H. Jiang, and C. Li, J. Power Sources 246, 402 (2014).

    Article  Google Scholar 

  12. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Adv. Mater. 23, 4828 (2011).

    Article  Google Scholar 

  13. P.F. Zhang, Z.Y. Zhang, J.H. Chen, and S. Dai, Carbon 93, 39 (2015).

    Article  Google Scholar 

  14. X.Q. Wang, C.G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes, A. Zhamu, Q. Fang, G.R. Chen, H.M. Meyer, B.Z. Jang, and S. Dai, J. Mater. Chem. A 1, 7920 (2013).

    Article  Google Scholar 

  15. D. Feng, Y.Y. Lv, Z.X. Wu, Y.Q. Dou, L. Han, Z.K. Sun, Y.Y. Xia, G.F. Zheng, and D.Y. Zhao, J. Am. Chem. Soc. 133, 15148 (2011).

    Article  Google Scholar 

  16. D. Saha, Y.C. Li, Z.H. Bi, J.H. Chen, J.K. Keum, D.K. Hensley, H.A. Grappe, H.M. Meyer, S. Dai, M.P. Paranthaman, and A.K. Naskar, Langmuir 30, 900 (2014).

    Article  Google Scholar 

  17. H.J. Liu, W.J. Cui, L.H. Jin, C.X. Wang, and Y.Y. Xia, J. Mater. Chem. 19, 3661 (2009).

    Article  Google Scholar 

  18. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science 332, 1537 (2011).

    Article  Google Scholar 

  19. F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Energy Environ. Sci. 4, 717 (2011).

    Article  Google Scholar 

  20. L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, and S.H. Yu, Adv. Funct. Mater. 24, 5104 (2014).

    Article  Google Scholar 

  21. H. Chen, Y.C. Xiong, T. Yu, P.F. Zhu, X.Z. Yan, Z. Wang, and S.Y. Guan, Carbon 113, 266 (2017).

    Article  Google Scholar 

  22. H. Chen, M. Zhou, Z. Wang, S.Y. Zhao, and S.Y. Guan, Electrochim. Acta 148, 187 (2014).

    Article  Google Scholar 

  23. Z. Qiang, Y.F. Xia, X.H. Xia, and B.D. Vogt, Chem. Mater. 29, 10178 (2017).

    Article  Google Scholar 

  24. Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, and D.S. Zhang, J. Mater. Chem. A 4, 10858 (2016).

    Article  Google Scholar 

  25. G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, and F. Wei, Small 10, 2251 (2014).

    Article  Google Scholar 

  26. D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li, and A.H. Lu, Energy Environ. Sci. 6, 652 (2013).

    Article  Google Scholar 

  27. X.L. Zhai, Y. Song, J.Q. Liu, P. Li, M. Zhong, C. Ma, H.Q. Wang, Q.G. Guo, and L.J. Zhi, J. Electrochem. Soc. 159, 177 (2012).

    Article  Google Scholar 

  28. H.L. Guo and Q.M. Gao, J. Power Sources 186, 551 (2009).

    Article  Google Scholar 

  29. G.Q. Wang, J. Zhang, S. Kuang, J. Zhou, W. Xing, and S.P. Zhuo, Electrochim. Acta 153, 273 (2015).

    Article  Google Scholar 

  30. Q. Li, R.R. Jiang, Y.Q. Dou, Z.X. Wu, T. Huang, D. Feng, J.P. Yang, A.S. Yu, and D.Y. Zhao, Carbon 4, 1248 (2011).

    Article  Google Scholar 

  31. Y.H. Wang, J.R. Zeng, J. Li, X.Q. Cui, A.M. Al-Enizi, L.J. Zhang, and G.F. Zheng, J. Mater. Chem. A 3, 16382 (2015).

    Article  Google Scholar 

  32. B. You, J. Yang, Y.Q. Sun, and Q.D. Su, Chem. Commun. 47, 12364 (2011).

    Article  Google Scholar 

  33. L.F. Chen, Y. Lu, L. Yu, and X.W. Lou, Energy Environ. Sci. 10, 1777 (2017).

    Article  Google Scholar 

  34. J.L. Liu, L.L. Zhang, H.B. Wu, J.Y. Lin, Z.X. Shen, and X.W. Lou, Energy Environ. Sci. 7, 3709 (2014).

    Article  Google Scholar 

  35. J.F. Chen, Y.L. Han, X.H. Kong, X.Z. Deng, H.J. Park, Y.L. Guo, S. Jin, Z.K. Qi, Z. Lee, Z.H. Qiao, R.S. Ruoff, and H.X. Ji, Angew. Chem. Int. Ed. 55, 13822 (2016).

    Article  Google Scholar 

  36. M. Hu, Y. Ju, K. Liang, T. Suma, J.W. Cui, and F. Caruso, Adv. Funct. Mater. 26, 5827 (2016).

    Article  Google Scholar 

  37. H. Wang, W. Zhu, Y. Ping, C. Wang, N. Gao, X.P. Yin, C. Gu, D. Ding, C.J. Brinker, and G.T. Li, ACS Appl. Mater. Interfaces. 9, 14258 (2017).

    Article  Google Scholar 

  38. R. Liu, Y. Guo, G. Odusote, and R.D. Priestly, ACS Appl. Mater. Interfaces. 5, 9167 (2013).

    Article  Google Scholar 

  39. P.L. Erdem, E.A. Bursali, and M. Yurdakoc, Environ. Prog. Sustain. 32, 1036 (2013).

    Article  Google Scholar 

  40. R. Narasimman and K. Prabhakaran, Carbon 55, 305 (2013).

    Article  Google Scholar 

  41. Q.Y. Xia, H. Yang, M. Wang, M. Yang, Q.B. Guo, L.M. Wan, H. Xia, and Y. Yu, Adv. Energy Mater. 7, 1701336 (2017).

    Article  Google Scholar 

  42. M.C. Wu, C.L. Li, J. Zhao, Y. Ling, and R. Liu, Dalton Trans. 47, 7812 (2018).

    Article  Google Scholar 

  43. Z. Ling, Z.Y. Wang, M.D. Zhang, C. Yu, G. Wang, Y.F. Dong, S.H. Liu, Y.W. Wang, and J.S. Qiu, Adv. Funct. Mater. 26, 111 (2016).

    Article  Google Scholar 

  44. L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, and Y.H. Huang, Energy Environ. Sci. 6, 2497 (2013).

    Article  Google Scholar 

  45. T. Yoon, C. Chae, Y.K. Sun, X. Zhao, H.H. Kungc, and J.K. Lee, J. Mater. Chem. 21, 17325 (2011).

    Article  Google Scholar 

  46. Z.Z. Benabithe, F.C. Marín, and C.M. Castilla, J. Power Sources 219, 80 (2012).

    Article  Google Scholar 

  47. Z. Chen, L.Q. Hou, Y. Cao, Y.S. Tang, and Y.F. Li, Appl. Surf. Sci. 435, 937 (2018).

    Article  Google Scholar 

  48. C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, and Z. Zapata-Benabithe, Carbon 49, 3808 (2011).

    Article  Google Scholar 

  49. T. Tomko, R. Rajagopalan, P. Aksoy, and H.C. Foley, Electrochim. Acta 56, 5369 (2011).

    Article  Google Scholar 

  50. Z. Ling, G. Wang, M.D. Zhang, X.M. Fan, C. Yu, J. Yang, N. Xiao, and J.S. Qiu, Nanoscale 7, 5120 (2015).

    Article  Google Scholar 

  51. Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 24, 5130 (2012).

    Article  Google Scholar 

  52. N.D. Kim, D.B. Buchholz, G. Casillas, M. José-Yacaman, and R.P. Chang, Adv. Funct. Mater. 24, 4186 (2014).

    Article  Google Scholar 

  53. C.H. Wang, C. Liu, J.S. Li, X.Y. Sun, J.Y. Shen, W.Q. Han, and L.J. Wang, Chem. Commun. 53, 1751 (2017).

    Article  Google Scholar 

  54. L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu, ACS Nano 6, 7092 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

R.L. acknowledges Shanghai Municipal Natural Science Foundation (No. 17ZR1432200), National Natural Science Foundation of China (No. 21774095), the Open Research Fund of State Key Laboratory of Structural Chemistry (No. 20170014), the Fundamental Research Funds for the Central Universities (No. 0400219376), the start-up funding from Tongji University and the Young Thousand Talented Program. L.H. acknowledges the support by the National Natural Science Foundation of China (No. 21471086), and the K.C. Wong MagnaFund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Han or Rui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wu, M., Zhao, J. et al. Tannic Acid-Assisted Fabrication of N/B-Codoped Hierarchical Carbon Nanofibers from Electrospun Zeolitic Imidazolate Frameworks as Free-Standing Electrodes for High-Performance Supercapacitors. J. Electron. Mater. 48, 3050–3058 (2019). https://doi.org/10.1007/s11664-019-07075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07075-z

Keywords

Navigation