Skip to main content
Log in

Analytical Subthreshold Current and Subthreshold Swing Models for a Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFET with Back-Gate Control

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) analytical models for the subthreshold current and␣subthreshold swing of the back-gated fully depleted recessed-source/drain (Re-S/D) silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) are presented. The surface potential is determined by solving the 2D Poisson equation in both channel and buried-oxide (BOX) regions, considering suitable␣boundary conditions. To derive closed-form expressions for the subthreshold characteristics, the virtual cathode potential expression has been derived in terms of the minimum of the front and back surface potentials. The effect of various device parameters such as gate oxide and Si film thicknesses, thickness of source/drain penetration into BOX, applied back-gate bias voltage, etc. on the subthreshold current and subthreshold swing has been analyzed. The validity of the proposed models is established using the Silvaco ATLAS™ 2D device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.globalfoundries.com/newsroom/press-releases/ 2015/07/13/globalfoundries-launches-industry-s-first-22nm- fd-soi-technology-platform. Accessed 15 Apr 2017

  2. C. Hu, in Proceedings of 19th IEEE International Symposium Physical Failure Analysis Integrated Circuits (IPFA) (2012), pp. 1–5.

  3. S. Markov, B. Cheng, and A. Asenov, IEEE Electron Device Lett. 33, 315 (2012).

    Article  Google Scholar 

  4. M.J. Kumar and A. Chaudhry, IEEE Trans. Electron Devices 51, 569 (2004).

    Article  Google Scholar 

  5. M.J. Kumar and M. Siva, IEEE Trans. Electron Devices 55, 1554 (2008).

    Article  Google Scholar 

  6. R. Yan, R. Duane, P. Razavi, A. Afzalian, I. Ferain, C.W. Lee, N.D. Akhavan, B.Y. Nguyen, K.K. Bourdelle, and J.P. Colinge, IEEE Trans. Electron Devices 57, 1319 (2014).

    Article  Google Scholar 

  7. M.T. Sanz, S. Celma, B. Calvo, and D. Flandre, IEE Proc. Circuits Devices Syst. 153, 461–465 (2006).

    Article  Google Scholar 

  8. R. Coquand, M. Cassé, S. Barraud, D. Cooper, V.M. Alvaro, M.P. Samson, S. Monfray, F. Boeuf, G. Ghibaudo, O. Faynot, and T. Poiroux, IEEE Trans. Electron Devices 60, 727 (2013).

    Article  Google Scholar 

  9. G. Kaushal, S.K. Manhas, S. Maheshwaram, and S. Dasgupta, J. Comput. Electron. 12, 306 (2013).

    Article  Google Scholar 

  10. Z. Zhang, S. Zhang, and M. Chan, IEEE Device Lett. 25, 740 (2004).

    Article  Google Scholar 

  11. D. Tekleab, S. Samavedam, and P. Zeitzoff, IEEE Trans. Electron Devices 56, 2291 (2009).

    Article  Google Scholar 

  12. E.G. Ioannidis, C.G. Theodorou, S. Haendler, E. Josse, C.A. Dimitriadis, and G. Ghibaudo, IEEE Trans. Electron Devices 36, 433 (2015).

    Article  Google Scholar 

  13. T. Numata, M. Noguchi, Y. Oowaki, and S. Takagi, Solid State Electron. 48, 979 (2004).

    Article  Google Scholar 

  14. A. Majumdar, Z. Ren, S.J. Koester, and W. Haensch, IEEE Trans. Electron Devices 56, 2270 (2009).

    Article  Google Scholar 

  15. A. Ohata, Y. Bae, C. Fenouillet-Beranger, and S. Cristoloveanu, IEEE Trans. Electron Device Lett. 33, 348 (2012).

    Article  Google Scholar 

  16. Z.Y. Tang, B. Tang, L.C. Zhao, G.L. Wang, J. Xu, Y.F. Xu, H.L. Wang, D.H. Wang, J.F. Li, J. Yan, and C. Zhao, ECS Trans. 61, 119 (2014).

    Article  Google Scholar 

  17. A. Biswas and S. Bhattacherjee, Microelectron. Reliab. 53, 363 (2013).

    Article  Google Scholar 

  18. N. Fasarakis, T. Karatsori, D.H. Tassis, C.G. Theodorou, F. Andrieu, O. Faynot, G. Ghibaudo, and C.A. Dimitriadis, IEEE Trans. Electron Devices 61, 969 (2014).

    Article  Google Scholar 

  19. S. Khandelwal, Y.S. Chauhan, D.D. Lu, S. Venugopalan, M.A.U. Karim, A.B. Sachid, B.-Y. Nguyen, O. Rozeau, O. Faynot, A.M. Niknejad, and C.C. Hu, IEEE Trans. Electron Devices 59, 2019 (2012).

    Article  Google Scholar 

  20. A. Kumar and P.K. Tiwari, Solid State Electron. 95, 52 (2014).

    Article  Google Scholar 

  21. G.K. Saramekala and P.K. Tiwari, J. Electron. Mater. 45, 5367 (2016).

    Article  Google Scholar 

  22. K. Suzuki and S. Pidin, IEEE Trans. Electron Devices 50, 1297–1305 (2003).

    Article  Google Scholar 

  23. ATLAS user’s manual, Device Simulation Software (Santa Clara: Silvaco International, 2012).

    Google Scholar 

  24. K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).

    Article  Google Scholar 

  25. B. Svilicic, V. Jovanovic, and T. Suligoj, Solid State Electron. 53, 540 (2009).

    Article  Google Scholar 

  26. Q. Chen. Scaling Limits and Opportunities of Double-Gate MOSFET. Ph. D. thesis, Georgia Institute of Technology (2003).

  27. A. Dey, A. Chakravorty, N. DasGupta, and A. DasGupta, IEEE Trans. Electron Devices 55, 3442 (2008).

    Article  Google Scholar 

  28. P.C. Yeh and J.G. Fossum, IEEE Trans. Electron Devices 42, 1605 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, for their financial support to do this work (Project No. SERB/ET-0415/2012). The simulation results were carried out at Device Simulation Laboratory, National Institute of Technology, Rourkela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saramekala, G.K., Tiwari, P.K. Analytical Subthreshold Current and Subthreshold Swing Models for a Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFET with Back-Gate Control. J. Electron. Mater. 46, 5046–5056 (2017). https://doi.org/10.1007/s11664-017-5508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5508-7

Keywords

Navigation