Skip to main content
Log in

In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570–600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Book  Google Scholar 

  2. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  3. J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).

    Article  Google Scholar 

  4. S.N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nano Lett. 10, 2825 (2010).

    Article  Google Scholar 

  5. S.N. Girard, K. Schmidt-Rohr, T.C. Chasapis, E. Hatzikraniotis, B. Njegic, E.M. Levin, A. Rawal, K.M. Paraskevopoulos, and M.G. Kanatzidis, Adv. Funct. Mater. 23, 747 (2013).

    Article  Google Scholar 

  6. S.N. Girard, T.C. Chasapis, J. He, X. Zhou, E. Hatzikraniotis, C. Uher, K.M. Paraskevopoulos, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 5, 8716 (2012).

    Article  Google Scholar 

  7. J. He, S.N. Girard, J.-C. Zheng, L. Zhao, M.G. Kanatzidis, and V.P. Dravid, Adv. Mater. 24, 4440 (2012).

    Article  Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  9. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013).

    Article  Google Scholar 

  10. Y. Gelbstein, J. Davidow, S.N. Girard, D.Y. Chung, and M. Kanatzidis, Adv. Energy Mater. 3, 815 (2013).

    Article  Google Scholar 

  11. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 396, 16 (2007).

    Article  Google Scholar 

  12. J. Davidow and Y. Gelbstein, J. Electron. Mater. 42, 1542 (2013).

    Article  Google Scholar 

  13. K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    Article  Google Scholar 

  14. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, J. Mater. Res. 26, 1919 (2011).

    Article  Google Scholar 

  15. Y. Sadia, L. Dinnerman, and Y. Gelbstein, J. Electron. Mater. 42, 1926 (2013).

    Article  Google Scholar 

  16. H.J. Wu, L-D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis and J.Q. He, Nat. Commun. 5, 4515 (2014)

  17. J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C.-I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard, and M.G. Kanatzidis, Mater. Sci. Eng., B 170, 58 (2010).

    Article  Google Scholar 

  18. J.E. Ni, E.D. Case, R.D. Schimidt, C.-I. Wu, T.P. Hogan, R.M. Trejo, E. Lara-Curzio, and M.G. Kanatzidis, Phil. Mag. 93, 4412 (2013).

    Article  Google Scholar 

  19. J.E. Ni, E.D. Case, R.C. Stewart, C.-I. Wu, T.P. Hogan, and M.G. Kanatzidis, J. Electron. Mater. 41, 1153 (2011).

    Article  Google Scholar 

  20. J.E. Ni, E.D. Case, R.D. Schmidt, C.-I. Wu, T.P. Hogan, R.M. Trejo, M.J. Kirkham, E. Lara-Curzio, and M.G. Kanatzidis, J. Mater. Sci. 48, 6233 (2013).

    Article  Google Scholar 

  21. K. An, H.D. Skorpenske, A.D. Stoica, D. Ma, X.-L. Wang, and E. Cakmak, Metall. Mater. Trans. A 42, 95 (2010).

    Article  Google Scholar 

  22. A.C. Larson and R.B.V. Dreele, General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, September 2004.

  23. G. Lucovsky and R.M. White, Phys. Rev. B 8, 660 (1973).

    Article  Google Scholar 

  24. T.C. Harman and I. Melngailis, in Applied Solid State Science, ed. by Wolfe Raymond (New York, Elsevier, 1974), Vol. 4, p 1.

  25. B. Houston, R.E. Strakna, and H.S. Belson, J. Appl. Phys. 39, 3913 (1968).

    Article  Google Scholar 

  26. S.I. Novikova and N.K. Abrikosov, Sov. Phys. Solid State 5, 1397 (1964).

    Google Scholar 

  27. T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.-I. Wu, E. Quarez, J. Androulakis, F.P. Poudeu, J. Sootsman, D.-Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E. Timm, H. Schock, F. Ren, J. Johnson, and E.D. Case, J. Electron. Mater. 36, 704 (2007).

    Article  Google Scholar 

  28. J.J. D’Angelo, E.D. Case, N. Matchanov, C.-I. Wu, T.P. Hogan, J. Barnard, C. Cauchy, T. Hendricks, and M.G. Kanatzidis, J. Electron. Mater. 40, 2051 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Temple University faculty start-up fund and the Department of Energy, “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001054. Research conducted at Oak Ridge National Laboratory (ORNL) Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors also thank Dr. Dong Ma and Ms. Hui Yang of ORNL for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Ren or Ke An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Schmidt, R., Case, E.D. et al. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material. J. Electron. Mater. 46, 2604–2610 (2017). https://doi.org/10.1007/s11664-016-4802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4802-0

Keywords

Navigation