Skip to main content
Log in

Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7–3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley–Read–Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E.C. Piquette, T. Sprafke, W.E. Tennant, M. Zandian, and J. Zino, Proc. SPIE (2008). pp. 70210H

  2. V.C. Lopes, A.J. Syllaios, and M.C. Chen, Semicond. Sci. Technol. 8, 824 (1993)

    Article  Google Scholar 

  3. J. Schuster, R.E. DeWames, E.A. DeCuir Jr., E. Bellotti, and P.S. Wijewarnasuriya, Appl. Phys. Lett. 107, 023502 (2015)

    Article  Google Scholar 

  4. R.E. DeWames, D.D. Edwall, M. Zandian, L.O. Bubulac, J.G. Pasko, W.E. Tennant, J.M. Arias, and A. D’Souza, J. Electron. Mater. 27, 722 (1998)

    Article  Google Scholar 

  5. R.E. DeWames, R.T. Littleton, C. Billman, J. Pellegrino, S. Horn, and R. Balcerak, US Workshop on the Physics and Chemistry of II-VI materials, extended abstract (2008), pp. 227

  6. Synopsys, Inc., Sentaurus Device User Guide (Mountain View, CA, 2013), version H-2013.03

  7. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, IEEE J. Topics Quant. Electron. 19, 3800415 (2013)

    Google Scholar 

  8. R. DeWames, R. Littleton, K. White, A. Wichman, E. Bellotti, and J. Pellegrino, J. Electron. Mater. 44, 2813 (2015)

    Article  Google Scholar 

  9. A.R. Wichman, R.E. DeWames, E. Bellotti, Proc. SPIE (2014), pp. 907003

    Article  Google Scholar 

  10. E. Bellotti, and D. D’Orsogna, IEEE J. Quant. Electron. 42, 418 (2006)

    Article  Google Scholar 

  11. D. D’Orsogna, S.P. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008)

    Article  Google Scholar 

  12. R.G. Humphreys, Infrared Phys. 23, 171 (1983)

    Article  Google Scholar 

  13. W. Shockley, and W.T. Read Jr., Phys. Rev. 87, 835 (1952)

    Article  Google Scholar 

  14. H. Wen, B. Pinkie, and E. Bellotti, J. Appl. Phys. 118, 015702 (2015).

    Article  Google Scholar 

  15. S.C. Choo, Solid State Electron. 11, 1069 (1968)

    Article  Google Scholar 

  16. G.M. Williams, and R.E. DeWames, J. Electron. Mater. 24, 1239 (1995)

    Article  Google Scholar 

  17. C.A. Grimbergen, Solid State Electron. 19, 1033 (1976)

    Article  Google Scholar 

  18. P.S. Wijewarnasuriya, Technical Report ARL-TR-6532 (Adelphi, MD: U.S. Army Research Laboratory, 2013).

  19. P.R. Bratt, J. Vac. Sci. Technol. A 1, 1687 (1983).

    Article  Google Scholar 

  20. J. Schuster, R.E. DeWames, E.A. DeCuir Jr., E. Bellotti, N. Dhar, and P.S. Wijewarnasuriya, Proc. SPIE (2015), pp. 960904.

  21. P.R. Bratt, T.N. Casselman, J. Vac. Sci. Technol. A 3, 238 (1985).

    Article  Google Scholar 

  22. W. Shockley, Bell Lab. Tech. J. 48, 435 (1949)

    Article  Google Scholar 

  23. M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham, WA: SPIE Press, 2007)

    Book  Google Scholar 

  24. M.A. Kinch, State-of-the-Art Infrared Detector Technology (Bellingham, WA: SPIE Press, 2014)

    Book  Google Scholar 

  25. P.S. Wijewarnasuriya, Y. Chen, G. Brill, B. Zandi, and N.K. Dhar, IEEE Trans. Electron. Devices 57, 782 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schuster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, J., DeWames, R.E., DeCuir, E.A. et al. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors. J. Electron. Mater. 45, 4654–4662 (2016). https://doi.org/10.1007/s11664-016-4602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4602-6

Keywords

Navigation