Skip to main content
Log in

Structural Characterization of the Nanocolumnar Microstructure of InAlN

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In x Al(1−x)N (InAlN) thin films, lattice-matched to GaN with an In composition of ∼17%, are of interest for GaN-based devices. However, InAlN thin films grown by molecular beam epitaxy exhibit a characteristic lateral composition modulation, or nanocolumnar microstructure, with an Al-rich center region and an In-rich boundary. The mechanism driving the formation of this microstructure remains unknown. To date, the structural characterization of the nanocolumn domain size and its associated compositional variation is challenging, requiring either transmission electron microscopy or atomic probe microscopy. We show that the nanocolumnar microstructure can be characterized using x-ray diffraction and is associated with increased diffuse scattering. Using this technique, we show that the development of the microstructure is dependent on growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Schmult, T. Siegrist, A.M. Sergent, M.J. Manfra, and R.J. Molnar, Appl. Phys. Lett. 90, 021922 (2007).

    Article  Google Scholar 

  2. K. Wang, R.W. Martin, D. Amabile, P.R. Edwards, S. Hernandez, E. Nogales, K.P. O’Donnell, K. Lorenz, E. Alves, V. Matias, A. Vantomme, D. Wolverson, and I.M. Watson, J. Appl. Phys. 103, 073510 (2008).

    Article  Google Scholar 

  3. R. Butté, J.-F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H.J. Buehlmann, S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, M. Mosca, C. Pinquier, M.A. Py, F. Demangeot, J. Frandon, P.G. Lagoudakis, J.J. Baumberg, and N. Grandjean, J. Phys. D 40, 6328 (2007).

    Article  Google Scholar 

  4. M. Henini and M. Razeghi, Optoelectronic Devices: III Nitrides (Amsterdam: Elsevier, 2005), p. 467.

    Google Scholar 

  5. Q.Y. Wei, T. Li, Y. Huang, J.Y. Huang, Z.T. Chen, T. Egawa, and F.A. Ponce, Appl. Phys. Lett. 100, 092101 (2012).

    Article  Google Scholar 

  6. L. Zhou, D.J. Smith, and M.T. McCartney, Appl. Phys. Lett. 90, 081917 (2007).

    Article  Google Scholar 

  7. S. Choi, F. Wu, T. Shivaraman, E.C. Young, and J.S. Speck, Appl. Phys. Lett. 100, 232102 (2012).

    Article  Google Scholar 

  8. S.L. Sahonta, G.P. Dimitrakopulos, Th. Kehagias, J. Kioseoglou, A. Adikimenakis, E. IIiopoulos, A. Georgakilas, H. Kirmse, W. Neumann, and Ph. Komninou, Appl. Phys. Lett. 95, 021913 (2009).

    Article  Google Scholar 

  9. M.H. Wong, F. Wu, C.A. Hurni, S. Choi, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 100, 072107 (2012).

    Article  Google Scholar 

  10. Z.L. Miao, T.J. Yu, F.J. Xu, J. Song, C.C. Huang, X.Q. Wang, Z.J. Yang, G.Y. Zhang, X.P. Zhang, D.P. Yu, and B. Shen, Appl. Phys. Lett. 95, 231909 (2009).

    Article  Google Scholar 

  11. R.B. Chung, F. Wu, R. Shivaraman, S. Keller, S.P. DenBaars, J.S. Speck, and S. Nakamura, J. Crystal Growth 324, 163 (2011).

    Article  Google Scholar 

  12. T.C. Sadler, M.J. Kappers, and R.A. Oliver, J. Crystal Growth 311, 3380 (2009).

    Article  Google Scholar 

  13. M.R. Uddin, M. Pandikunta, V. Mansurov, S. Sohal, D. Myasishchev, G.M. Guryanov, V. Kuryatakov, M. Holtz, and S. Nikishin, J. Electron. Mater. 41, 824 (2012).

    Article  Google Scholar 

  14. S.W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E.C.H. Kyle, P.G. Burke, U.K. Mishra, and J.S. Speck, Semicond. Sci. Technol. 29, 045011 (2014).

    Article  Google Scholar 

  15. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 77, 2145 (2000).

    Article  Google Scholar 

  16. T. Metzger, T. Höpler, and E. Born, Philos. Mag. A 77, 1013 (1998).

    Article  Google Scholar 

  17. J. Bläsing, A. Krost, J. Hertkorn, F. Scholz, L. Kirste, A. Chuvilin, and U. Kaiser, J. Appl. Phys. 105, 033504 (2009).

    Article  Google Scholar 

  18. P.F. Miceli and C.J. Palmstrom, Phy. Rev. B 51, 5506 (1995).

    Article  Google Scholar 

  19. A. Boulle, R. Guinebretière, and A. Dauger, J. Appl. Phys. 97, 073503 (2005).

    Article  Google Scholar 

  20. Evans Analytical Group, http://www.eag.com/

  21. J. Elsner and R. Jones, Phys. Rev. Lett. 79, 3672 (1997).

    Article  Google Scholar 

  22. W. Qian, G.S. Rohrer, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, Appl. Phys. Lett. 67, 2284 (1995).

    Article  Google Scholar 

  23. A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).

    Article  Google Scholar 

  24. T. Mozume and I. Ohbu, Jpn. J. Appl. Phys. 31, 3277 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Office of Naval Research (N00014-08-1-0396), and the National Science Foundation (NSF-ECCS-12-02132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Jiao, W., Li, J. et al. Structural Characterization of the Nanocolumnar Microstructure of InAlN. J. Electron. Mater. 45, 654–660 (2016). https://doi.org/10.1007/s11664-015-4167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4167-9

Keywords

Navigation