Skip to main content
Log in

Temperature- and Frequency-Dependent Dielectric Properties of Sol–Gel-Derived BaTiO3-NaNbO3 Solid Solutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A sol–gel-derived powder synthesis method has been used to prepare BaTiO3-NaNbO3 (BT-NN) solid-solution ceramic samples with various compositions. Fine and homogeneous complex perovskite ceramics were obtained at lower processing temperatures than used in conventional solid-state processing. The ferroelectric and relaxor ferroelectric properties of the sol–gel-synthesized (1 − x)BaTiO3-xNaNbO3 [(1 − x)BT-xNN] ceramics in the wide composition range of 0 < x ≤ 0.7 were extensively studied. Structural and dielectric characterization results revealed that a low level of NN addition (x = 0.04) to BT is sufficient to cause a continuous relaxor-to-ferroelectric transition, and the relaxor behavior was consistently observed at compositions with high NN content up to x = 0.7. A number of relaxor parameters including the Curie temperature, Burns temperature, freezing temperature, γ, diffuseness parameter (δ), and activation energy were determined from the temperature and frequency dependency of the real part of the dielectric permittivity for various BT-NN compositions using the Curie–Weiss law and Vögel–Fulcher relationship. The systematic changes of these parameters with respect to composition indicate that a continuous crossover between BT-based relaxor and NN-based relaxor occurs at a composition near x = 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Cross, Ferroelectrics 76, 241 (1987).

    Article  Google Scholar 

  2. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, and M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013).

    Article  Google Scholar 

  3. V.V. Shvartsman and D.C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).

    Article  Google Scholar 

  4. R. Dittmer, W. Jo, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 034107 (2011).

    Article  Google Scholar 

  5. B. Xiong, H. Hao, S. Zhang, H. Liu, and M. Cao, J. Am. Ceram. Soc. 94, 3412 (2011).

    Article  Google Scholar 

  6. G. Samara, J. Phys.: Condens. Matter 15, R367 (2003).

    Google Scholar 

  7. D. Viehland, S.J. Jang, L.E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).

    Article  Google Scholar 

  8. A. Levstik, Z. Kutnjak, C. Filipic, and R. Pirc, Phys. Rev. B 57, 57 (1998).

    Article  Google Scholar 

  9. A.E. Glazounov, A.K. Tagantsev, and A.J. Bell, Phys. Rev. B 53, 11281 (1996).

    Article  Google Scholar 

  10. G. Burns and F. Dacol, Solid State Commun. 48, 853 (1983).

    Article  Google Scholar 

  11. G.A. Smolenskii and V.A. Isupov, Zh. Tekh. Fiz. 24, 1375 (1954).

    Google Scholar 

  12. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002).

    Article  Google Scholar 

  13. A. Chen, Y. Zhi, and J. Zhi, Phys. Rev. B 61, 957 (2000).

    Article  Google Scholar 

  14. J. Zhi, A. Chen, Y. Zhi, P.M. Vilarinho, and J.L. Baptista, J. Appl. Phys. 84, 983 (1998).

    Article  Google Scholar 

  15. J. Ravez and A. Simon, J. Solid State Chem. 162, 260 (2001).

    Article  Google Scholar 

  16. J. Ravez and A. Simon, Eur. Phys. J. AP 11, 9 (2000).

    Article  Google Scholar 

  17. A.N. Salak, M.P. Seabra, and V.M. Ferreira, Ferroelectrics 318, 185 (2005).

    Article  Google Scholar 

  18. H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009).

    Article  Google Scholar 

  19. R. Farhi, M. El Marssi, A. Simon, and J. Ravez, Eur. Phys. J. B 18, 605 (1999).

    Article  Google Scholar 

  20. H. Khemakhem, A. Simon, R. von der Mühll, and J. Ravez, J. Phys. 12, 5951 (2000).

    Google Scholar 

  21. S. Wada, M. Nitta, N. Kumada, D. Tanaka, M. Furukawa, S. Ohno, C. Moriyoshi, and Y. Kuroiwa, Jpn. J. Appl. Phys. 47, 7678 (2008).

    Article  Google Scholar 

  22. I.P. Raevskii, L.M. Proskuryakova, L.A. Reznichenko, E.K. Zvorykina, and L.A. Shilkina, Sov. Phys. J. 21, 259 (1978).

    Article  Google Scholar 

  23. J.T. Zeng, K.W. Kwok, and H.L.W. Chan, J. Am. Ceram. Soc. 89, 2828 (2006).

    Google Scholar 

  24. R.M. Glaister, J. Am. Ceram. Soc. 43, 348 (1960).

    Article  Google Scholar 

  25. W. Kleemann, Int. J. Mod. Phys. B 7, 2469 (1993).

    Article  Google Scholar 

  26. G.A. Smolenskii, J. Phys. Soc. Jpn. 28, 26 (1970).

    Google Scholar 

  27. V. Kirillov and V. Isupov, Ferroelectrics 5, 3 (1973).

    Article  Google Scholar 

  28. A.K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994).

    Article  Google Scholar 

  29. C. Stringer, T. Shrout, and C. Randall, J. Appl. Phys. 101, 054107 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2013R1A1A2061760). The dielectric measurements are supported by the National Science Foundation, as part of the Center for Dielectrics and Piezoelectrics under Grant No. IIP-1361571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Kyun Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, DK., Goh, Y., Son, D. et al. Temperature- and Frequency-Dependent Dielectric Properties of Sol–Gel-Derived BaTiO3-NaNbO3 Solid Solutions. J. Electron. Mater. 45, 631–638 (2016). https://doi.org/10.1007/s11664-015-4162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4162-1

Keywords

Navigation