Skip to main content
Log in

Thermoelectric Properties of Light-Element-Containing Zintl Compounds CaZn2−x Cu x P2 and CaMnZn1−x Cu x P2 (x = 0.0–0.2)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Light-element-containing CaAl2Si2-type Zintl phases CaZn2−x Cu x P2 and CaMnZn1−x Cu x P2 (x = 0.0–0.2) have been synthesized by solid-state reaction. Electrical resistivity (ρ), Seebeck coefficient (α), and thermal conductivity (κ) were measured over a wide temperature (T) range (80–1000 K) to evaluate the thermoelectric potential of these materials. Below 300 K, the power factor (PF; α 2/ρ) is very small. Above 600 K, however, PF increases rapidly for all compositions because of a rapid increase of α and a simultaneous decrease of ρ. The measured large α is consistent with the wider band gap expected for these compositions. Compared with the pure compounds, larger PF values are observed for the Cu-substituted compounds; the largest observed PF is ∼0.5 mW/m K2. The thermal conductivity is found to be rather low, despite the presence of light elements, and is in the range 1.0–1.5 W/m K at 1000 K. Because of the combination of low κ and moderate PF values, the dimensionless figure of merit ZT = α 2 T/ρκ reaches a maximum of 0.4 for CaZn1.9Cu0.1P2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  Google Scholar 

  2. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995) p. 407.

  3. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics- Basic Principles and New Materials Developments, Springer Series in Materials Science, Eds. R. Hull,. R.M. Osgood Jr., H. Sakaki, and A. Zunger (New York: Springer, 2001), p. 78.

  4. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  5. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, J. Solid State Chem. 180, 1414 (2007).

    Article  Google Scholar 

  6. V. Ponnambalam, X. Gao, S. Lindsey, P. Alboni, S. Su, B. Zhang, F. Drymiotis, M.S. Daw, and T.M. Tritt, J. Alloys Compds. 484, 80 (2009).

    Article  Google Scholar 

  7. F. Gascoin, S. Ottensmann, D. Stark, S.M. Haile, and G.J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).

    Article  Google Scholar 

  8. C. Yu, T.J. Zhu, S.N. Zhang, X.B. Zhao, J. He, Z. Su, and T.M. Tritt, J. Appl. Phys. 104, 013705 (2008).

    Article  Google Scholar 

  9. J.F. Rauscher, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, and Z. Anorg, Allg. Chem. 633, 1587 (2007).

    Article  Google Scholar 

  10. A.F. May, E.S. Toberer, and G.J. Snyder, J. Appl. Phys. 106, 013706 (2009).

    Article  Google Scholar 

  11. A. Zevalkink, E.S. Toberer, T. Bleith, E.F. Larsen, and G.J. Snyder, J. Appl. Phys. 110, 013721 (2011).

    Article  Google Scholar 

  12. A.F. May, M.A. McGuire, J. Ma, O. Delaire, A. Huq, and R. Custelcean, J. Appl. Phys. 111, 033708 (2012).

    Article  Google Scholar 

  13. A.N. Nateprov, VCh Kravtsov, V. Moshnyaga, and S. Schorr, Sur. Eng. Appl. Electrochem. 48, 375 (2012).

    Article  Google Scholar 

  14. A.F. May, M.A. McGuire, D.J. Singh, J. Ma, O. Delaire, A. Huq, W. Cai, and H. Wang, Phys. Rev. B 85, 035202 (2012).

    Article  Google Scholar 

  15. V. Ponnambalam, S. Lindsey, W. Xie, D. Thompson, F. Drymiotis, and T.M. Tritt, J. Phys. D Appl. Phys. 44, 155406 (2011).

    Article  Google Scholar 

  16. T. Yi, G. Zhang, N. Tsujii, J.-P. Fleurial, A. Zevalkink, G.J. Snyder, N.G. Jensen, and S.M. Kauzlarich, Inorg. Chem. 52, 3787 (2013).

    Article  Google Scholar 

  17. A. Artmann, A. Mewis, M. Roepke, G. Michels, and Z. Anorg, Allg. Chem 622, 679 (1996).

    Article  Google Scholar 

  18. C. Zheng, R. Hoffmann, R. Nesper, and H.G. von Schnering, J. Am. Chem. Soc. 108, 1876 (1986).

    Article  Google Scholar 

  19. P. Alemany, M. Llunell, and E. Canadell, J. Comp. Chem. 29, 2144 (2008).

    Article  Google Scholar 

  20. P.E.R. Blanchard, S.S. Stoyko, R.G. Cavell, and A. Mar, J. Solid State Chem. 184, 97 (2011).

    Article  Google Scholar 

  21. C. Zheng and R. Hoffmann, J. Solid State Chem. 72, 58 (1988).

    Article  Google Scholar 

  22. S.M. Kauzlarich, C.L. Condron, J.K. Wassei, T. Ikeda, and G.J. Snyder, J. Solid State Chem. 182, 240 (2009).

    Article  Google Scholar 

  23. M. Imai, H. Abe, and K. Yamada, Inorg. Chem. 43, 5186 (2004).

    Article  Google Scholar 

  24. Y.K. Kuo, K.M. Sivakumar, J.I. Tasi, C.S. Lue, J.W. Huang, S.Y. Wang, D. Varshney, N. Kaurav, and R.K. Singh, J. Phys.: Condens. Matter 19, 176206 (2007).

    Google Scholar 

  25. C.S. Lue, C.P. Fang, A.C. Abhyankar, J.W. Lin, H.W. Lee, C.M. Chang, and Y.K. Kuo, Intermetallics 19, 1448 (2011).

    Article  Google Scholar 

  26. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

  27. J.R. Drabble, and H.J. Goldsmid, Thermal Conduction in Semiconductors, International Series of Monographs on Semiconductors, ed. H.K. Henisch, Vol. 4, (New York: Pergamon Press, 1961), p. 165.

  28. V.I. Fistul’, Heavily Doped Semiconductors (New York: Plenum Press, 1969), p. 157.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnambalam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponnambalam, V., Morelli, D.T. Thermoelectric Properties of Light-Element-Containing Zintl Compounds CaZn2−x Cu x P2 and CaMnZn1−x Cu x P2 (x = 0.0–0.2). J. Electron. Mater. 43, 1875–1880 (2014). https://doi.org/10.1007/s11664-013-2895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2895-2

Keywords

Navigation