Skip to main content
Log in

High-Pressure Torsion to Improve Thermoelectric Efficiency of Clathrates?

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-pressure torsion (HPT), as a technique to produce severe plastic deformation, has been proven effective to improve the thermoelectric performance of skutterudites. In this report, we present microstructural and thermoelectric properties of the clathrate Ba8Cu3.5Ge41In1.5 processed by HPT. The sample was synthesized from high-purity elements, subsequently annealed, ball milled, and hot pressed, and finally subject to HPT. Compared with the ball-milled and hot-pressed sample, the HPT-processed sample has higher electrical resistivity and Seebeck coefficient, and lower thermal conductivity, electron concentration, and mobility, which is attributed to the reduced grain size and increased density of dislocations, point defects, and cracks. No essential improvement of the dimensionless thermoelectric figure of merit is observed in the investigated temperature range, questioning the universal versatility of this technique for improvement of thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack, New Materials and Performance Limits for Thermoelectric Cooling (Boca Raton, FL: CRC, 1995)

    Google Scholar 

  2. G.A. Slack, Mater. Res. Soc. Symp. Proc 478, 47 (1997).

    Article  CAS  Google Scholar 

  3. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1997).

    Article  Google Scholar 

  4. G.S. Nolas, T.J.R. Weakley, J.L. Cohn, and R. Sharma, Phys. Rev. B 61, 3845 (2000).

    Article  CAS  Google Scholar 

  5. G.S. Nolas, B.C. Chakoumakos, G.J.L. B. Mathieu, and T.J.R. Weakley, Chem. Mater. 12, 1947 (2000).

    Article  CAS  Google Scholar 

  6. M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bal, and B.B. Iversen, Nat. Mater. 7, 811 (2008).

    Article  CAS  Google Scholar 

  7. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99(2), 023708 (2006). DOI 10.1063/1.2163979

    Google Scholar 

  8. S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Dalton Trans. 2007, 2099 (2007).

    Article  Google Scholar 

  9. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  CAS  Google Scholar 

  10. E. Zintl, Angew. Chem. 52, 1 (1939)

    Article  CAS  Google Scholar 

  11. A. Prokofiev, M. Ikeda, E. Makalkina, R. Svagera, M. Waas, and S. Paschen, J. Electron. Mater. (2012). DOI 10.1007/s11664-012-2358-1

  12. A.J. Minnich, M.S. Dresselhaus, Z. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)

    Article  CAS  Google Scholar 

  13. L. Zhang, A. Grytsiv, B. Bonarski, M. Kerber, D. Setman, E. Schafler, P. Rogl, E. Bauer, G. Hilscher, and M. Zehetbauer, J. Alloy Compd. 494(1–2), 78 (2010). DOI 10.1016/j.jallcom.2010.01.042

    Google Scholar 

  14. G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60(5), 2146 (2012). DOI 10.1016/j.actamat.2011.12.023

    Google Scholar 

  15. G. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, O. Eibl, A. Grytsiv, E. Bauer, M. Reinecker, W. Schranz, and P. Rogl, J. Alloy Compd. (2012). DOI 10.1016/j.jallcom.2012.05.011

  16. X. Yan, at al., unpublished

  17. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  CAS  Google Scholar 

  18. J. Callaway, J. von Baeyer, Phys. Rev. 120, 1149 (1960).

    Article  CAS  Google Scholar 

  19. J. Callaway, Phys. Rev. 122, 787 (1961).

    Article  CAS  Google Scholar 

  20. C. Uher, Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum: New York, 2003)

    Google Scholar 

  21. F.J. Blatt, Physics of Electronic Conduction in Solids (New York: McGraw-Hill, 1968)

    Google Scholar 

  22. A.N. Gerritsen, Encyclopedia of Physics (Springer-Verlag OHG, Berlin, 1956).

  23. F.J. Blatt, Proc. Phys. Soc. 83, 1065 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Falmbigl, M., Rogl, G. et al. High-Pressure Torsion to Improve Thermoelectric Efficiency of Clathrates?. J. Electron. Mater. 42, 1330–1334 (2013). https://doi.org/10.1007/s11664-012-2440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2440-8

Keywords

Navigation