Skip to main content
Log in

Thermal Fatigue of Cast and Hot-Pressed Lead-Antimony-Silver-Tellurium (LAST) Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Lead-antimony-silver-tellurium (LAST) thermoelectric materials are candidates for waste-heat recovery applications. However, rapid heating and cooling (thermal shock) imposes thermomechanical stresses that can cause microcracking. Waste-heat recovery applications involve thermal fatigue, in which a series of hundreds or thousands of individual thermal shock events can lead to accumulation of microcrack damage in brittle thermoelectrics such as LAST. Microcracking in turn leads to a decrease in transport properties, such as electrical conductivity and thermal conductivity, and mechanical properties, including elastic modulus and strength. Thus, microcracking can affect both thermoelectric performance and mechanical integrity. In this study, LAST specimens were rapidly cooled (quenched) into a fluid (water or silicone oil) in order to compare the results with the vast majority of thermal shock studies of brittle materials that are quenched in a similar manner. Decreases in elastic modulus, E, with accumulating microcrack damage were measured using resonant ultrasound spectroscopy (RUS). The evolution of thermal fatigue damage observed in this study is also described well by an equation that successfully describes thermal fatigue damage in a variety of brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Adv. Energy Mater. 1, 713 (2011).

    Article  CAS  Google Scholar 

  2. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  3. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  4. B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.-Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).

    Article  CAS  Google Scholar 

  5. J. Dadda, E. Muller, S. Perlt, T. Hoche, P.B. Pereira, and R.P. Hermann, J. Mater. Res. 26, 1800 (2011).

    Article  CAS  Google Scholar 

  6. T.J. Lu and N.A. Fleck, Acta Mater. 46, 4755 (1998).

    Article  CAS  Google Scholar 

  7. L.T. Zhao, T.J. Lu, and N.A. Fleck, J. Mech. Phys. Solids 48, 867 (2000).

    Article  CAS  Google Scholar 

  8. F. Kreith, Principles of Heat Transfer, 3rd ed. (New York: Harper and Row, 1973), pp. 14–22.

    Google Scholar 

  9. E.D. Case, The Saturation of Thermomechanical Fatigue in Brittle Materials, Thermo-Mechanical Fatigue and Fracture, ed. M.H. Alibadi (Southampton: WIT Press, 2002), pp. 137–208.

    Google Scholar 

  10. A.Q. Morrison, E.D. Case, F. Ren, A.J. Baumann, T.J. Hendricks, C. Cauchy, and J. Barnard, Mater. Chem. Phys. 134, 973–987 (2012).

    Article  CAS  Google Scholar 

  11. W.J. Lee, Y. Kim, and E.D. Case, J. Mater. Sci. 28, 2079 (1993).

    Article  CAS  Google Scholar 

  12. A.L. Pilchak, F. Ren, E.D. Case, E.J. Timm, H.J. Schock, C.-I. Wu, and T.P. Hogan, Philos. Mag. 87, 4567 (2007).

    Article  CAS  Google Scholar 

  13. R.L. Fullman, Trans. Am. Inst. Min. Met. Eng. 197, 447 (1953).

    CAS  Google Scholar 

  14. E.D. Case, J.R. Smyth, and O. Hunter, J. Nucl. Mater. 102, 135 (1981).

    Article  CAS  Google Scholar 

  15. J.E. Ni, E.D. Case, R.D. Schmidt, C-I Wu, T. Hogan, R.M. Trejo, E. Lara-Curzio, S.N. Girard, and M.G. Kanatzidis, to be submitted.

  16. F. Ren, E.D. Case, J.R. Sootsman, M.G. Kanatzidis, H. Kong, E. Lara-Curzio, R.M. Trejo, and C. Uher, Acta Mater. 56, 5954 (2008).

    Article  CAS  Google Scholar 

  17. F. Ren, E.D. Case, J.E. Ni, E.J. Timm, E. Lara-Curzio, R.M. Trejo, C.-H. Lin, and M.G. Kanatzidis, Philos. Mag. 89, 143 (2009).

    Article  CAS  Google Scholar 

  18. W.J. Lee and E.D. Case, Mater. Sci. Eng. A-Struct. 119, 113 (1989).

    Article  Google Scholar 

  19. W.J. Lee and E.D. Case, J. Mater. Sci. 25, 5043 (1990).

    Article  CAS  Google Scholar 

  20. W.J. Lee and E.D. Case, Mater. Sci. Eng. A-Struct. 154, 1 (1991).

    Article  Google Scholar 

  21. J.H. Ainswort and R.H. Herron, Am. Ceram. Soc. Bull. 53, 533 (1974).

    Google Scholar 

  22. D.S. Forsyth, O. Kasap, I. Wacker, and S. Yannacopoulos, J. Eng. Mater. Technol. 116, 113 (1994).

    Article  CAS  Google Scholar 

  23. A.I. Ivon, V.R. Kolbunov, and I.M. Chernenko, J. Eur. Ceram. Soc. 19, 1883 (1999).

    Article  CAS  Google Scholar 

  24. S.O. Kasap, S. Yannacopoulos, V. Mirchandani, and J.R. Hildebrandt, J. Eng. Mater. Technol. 114, 132 (1992).

    Article  CAS  Google Scholar 

  25. X. Fan, E.D. Case, and M.J. Baumann, J. Mater. Sci. 47, 6333 (2012).

    Article  CAS  Google Scholar 

  26. E.D. Case and C. Glinka, J. Mater. Sci. 19, 2962 (1984).

    Article  CAS  Google Scholar 

  27. E.D. Case and Y. Kim, J. Mater. Sci. 28, 1885 (1993).

    Article  Google Scholar 

  28. A. Kumakawa and M. Niino, Thermal fatigue characteristics of functionally gradient materials for Aerospace applications.Thermal Shock Behavior and Thermal Fatigue of Advanced Ceramics, ed. G.A. Schneider and G. Petzow (The Netherlands: Kluwer Academic, 1993), pp. 393–406.

    Google Scholar 

  29. A. Sinha, K. Kokini, and K.J. Bowman, Mater. Sci. Eng. A188, 317 (1994).

    CAS  Google Scholar 

  30. L.M. Zhang, T. Hirai, A. Kumakawa, and R.Z. Yuan, Composites B 28B, 21 (1997).

    Article  CAS  Google Scholar 

  31. N. Katagiri, Y. Hattori, T. Ota, and I. Yamai, Nippon Seram. Kyo. Gak. 102, 718 (1994).

    Article  CAS  Google Scholar 

  32. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. (New York: Wiley, 1976), pp. 674–677.

    Google Scholar 

  33. Y. Kim, W.J. Lee, and E.D. Case, Mater. Sci. Eng. A-Struct. 145, L7 (1991).

    Article  Google Scholar 

  34. F. Ren, B.D. Hall, E.D. Case, E.J. Timm, R.M. Trejo, R. Meisner, and E. Lara-Curzio, Philos. Mag 89, 1439 (2009).

    Article  CAS  Google Scholar 

  35. F. Ren, B.D. Hall, J.E. Ni, E.D. Case, E.J. Timm, H.J. Schock, C.-I. Wu, J.J.D’Angelo, T.P. Hogan, R.M. Trejo, and E. Lara-Curzio, Thermoelectric Power Generation, Materials Research Society Proceedings, ed. T.P. Hogan, J. Yang, R. Funahashi, T. Tritt, vol. 1044 (Warrendale, PA: Materials Research Society, 2008), pp. 121–126

  36. T. Tang, C.Y. Hui, H.G. Retsos, and E.J. Kramer, Eng. Fracture Mech. 72, 791 (2005).

    Article  Google Scholar 

  37. L. Remy, A. Alam, N. Haddar, A. Koster, and N. Marchal, Mater. Sci. Eng. A-Struct. 468–470, 40 (2007).

    Article  Google Scholar 

  38. J. Rudolph, S. Bergholz, A. Willuweit, M. Vormwald, and K. Bauerbach, Mat.-wiss. u.Werkstofftech 42, 1082 (2011).

    Article  CAS  Google Scholar 

  39. S. Gallops, T. Fett, and J.J. Kruzic, J. Am. Ceram. Soc. 94, 2556 (2011).

    Article  CAS  Google Scholar 

  40. J.J. Kruzic, R.M. Cannon, and R.O. Ritchie, J. Am. Ceram. Soc. 87, 93 (2004).

    Article  CAS  Google Scholar 

  41. P.F. Becher and W.H. Warwick, Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, ed. G.A. Schneider and G. Petzow (Boston: Kluwer Academic Publishers, 1993), pp. 37–48.

  42. T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.-I. Wu, E. Quarez, J. Androulakis, F.P. Poudeu, J. Sootsman, D.-Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E. Timm, H. Schock, F. Ren, J. Johnson, and E.D. Case, J. Electron. Mater. 36, 704 (2007).

    Article  CAS  Google Scholar 

  43. J.J. D’Angelo, E.D. Case, N. Matchanov, C.-I. Wu, T.P. Hogan, J. Barnard, C. Cauchy, T. Hendricks, and M.G. Kanatzidis, J. Electron. Mater. 40, 2051 (2011).

    Article  Google Scholar 

  44. N.E. Dowling, Mechanical Behavior of Materials, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 1999), pp. 185–187, 261–262.

  45. ASTM C 1499. Standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature (ASTM International, 2005).

  46. M. Dube, V. Doquet, A. Constantinescu, D. George, Y. Remond, and S. Ahzi, Mech. Mater. 42, 863 (2010).

    Article  Google Scholar 

  47. A.G. Tomba Martinez, A. Camerucci, and A.L. Cavalieri, J. Mater. Sci. 43, 2731 (2008).

    Article  CAS  Google Scholar 

  48. A.G. Tomba Martinez, A.L. Cavalieri, and J. Euro, Ceram. Soc. 20, 889–893 (2000).

    Article  Google Scholar 

  49. F. Ren, E.D. Case, E.J. Timm, E. Lara-Curzio, and R.M. Trejo, Acta Mater. 58, 31–38 (2010).

    Article  CAS  Google Scholar 

  50. J.N. Reddy, An Introduction to the Finite Element Method, 3rd ed. (New York: McGraw-Hill Higher Education, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J.E., Case, E.D. Thermal Fatigue of Cast and Hot-Pressed Lead-Antimony-Silver-Tellurium (LAST) Thermoelectric Materials. J. Electron. Mater. 42, 1382–1388 (2013). https://doi.org/10.1007/s11664-012-2254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2254-8

Keywords

Navigation