Skip to main content
Log in

Effect of Sintering on the Thermoelectric Transport Properties of Bulk Nanostructured Bi0.5Sb1.5Te3 Pellets Prepared by Chemical Synthesis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Considerable research effort has gone into improving the performance of traditional thermoelectric materials such as Bi2−x Sb x Te3 through a variety of nanostructuring approaches. Bottom-up, chemical approaches have the potential to produce very small nanoparticles (≪100 nm) with narrow size distribution and controlled shape. For this study, nanocrystalline powder of Bi0.5Sb1.5Te3 was synthesized using a ligand-assisted chemical method, and consolidated into pellets with cold pressing followed by sintering in Ar atmosphere. The thermoelectric transport properties were measured from 7 K to 300 K as a function of sintering temperature. Sintering is found to increase ZT and to move the maximum in ZT to lower temperatures due to a reduction in the free charge concentration. Hall mobility studies indicate that sintering increases the electron mean free path more than it increases the phonon mean free path up to sintering temperature of 598 K. A maximum ZT of 0.42 was measured at temperature of 275 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Google Scholar 

  2. S.K. Bux, J.-P. Fleurial, and R.B. Kaner, Chem. Commun. 46, 8311 (2010).

    Article  CAS  Google Scholar 

  3. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  5. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  6. D.V. Talapin, J.S. Lee, M.V. Kovalenko, and E.V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  CAS  Google Scholar 

  7. Y.X. Zhao, J.S. Dyck, and C. Burda, J. Mater. Chem. 21, 17049 (2011).

    Article  CAS  Google Scholar 

  8. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, and J.V. Badding, Small 5, 933 (2009).

    Article  CAS  Google Scholar 

  9. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).

    Article  CAS  Google Scholar 

  10. Y.X. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda, J. Am. Chem. Soc. 132, 4982 (2010).

    Article  CAS  Google Scholar 

  11. Y.X. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda, J. Phys. Chem. C 114, 11607 (2010).

    Article  CAS  Google Scholar 

  12. M.V. Kovalenko, B. Spokoyny, J.-S. Lee, M. Scheele, A. Weber, S. Perera, D. Landry, and D.V. Talapin, J. Am. Chem. Soc. 132, 6686 (2010).

    Article  CAS  Google Scholar 

  13. A. Purkayastha, A. Jain, C. Hapenciuc, R. Buckley, B. Singh, C. Karthik, R.J. Mehta, T. Borca-Tasciuc, and G. Ramanath, Chem. Mater. 23, 3029 (2011).

    Article  CAS  Google Scholar 

  14. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  15. C.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).

    Article  Google Scholar 

  16. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  Google Scholar 

  17. L.D. Ivanova and Y.V. Granatkina, Inorg. Mater. 36, 672 (2000).

    Article  CAS  Google Scholar 

  18. F.R. Yu, J.J. Zhang, D.L. Yu, J.L. He, Z.Y. Liu, B. Xu, and Y.J. Tian, J. Appl. Phys. 105, 094303 (2009).

    Article  Google Scholar 

  19. M. Scheele, N. Oeschler, I. Veremchuk, K.-G. Reinsberg, A.-M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, and H. Weller, ACS Nano 4, 4283 (2010).

    Article  CAS  Google Scholar 

  20. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).

    Article  CAS  Google Scholar 

  21. Y.Q. Cao, T.J. Zhu, and X.B. Zhao, J. Phys. D 42, 015406 (2007).

    Article  Google Scholar 

  22. J. Adachi, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Compd. 432, 7 (2007).

    Article  CAS  Google Scholar 

  23. I. Sumirat, Y. Ando, and S. Shimamura, J. Porous. Mater. 13, 439 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Dyck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyck, J.S., Mao, B., Wang, J. et al. Effect of Sintering on the Thermoelectric Transport Properties of Bulk Nanostructured Bi0.5Sb1.5Te3 Pellets Prepared by Chemical Synthesis. J. Electron. Mater. 41, 1408–1413 (2012). https://doi.org/10.1007/s11664-012-1998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1998-5

Keywords

Navigation