Skip to main content
Log in

Simultaneous Increases in Electrical Conductivity and Seebeck Coefficient of PEDOT:PSS Films by Adding Ionic Liquids into a Polymer Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical conductivity and Seebeck coefficient of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films were simultaneously improved by adding an ionic liquid (IL) into a polymer solution of the polymers. The maximum electrical conductivity of such a PEDOT:PSS/IL film reached 174 S cm−1, more than an order of magnitude higher than that of pure PEDOT:PSS film, and the maximum Seebeck coefficient was up to 30 μV K−1, more than twice the value for pure PEDOT:PSS film. This behavior is different from conventional thermoelectric (TE) materials, whose TE properties are strongly correlated, such as increasing electrical conductivity with increasing carrier concentration, usually resulting in a logarithmic decrease in Seebeck coefficient. Atomic force microscopy images of the PEDOT:PSS/IL films indicated that the ILs induced formation of a particular three-dimensional structure of highly conducting PEDOT grains, resulting in improvement of the TE performance of PEDOT:PSS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wang, L. Tang, M.Q. Long, and Z.G. Shuai, J. Chem. Phys. 131, 224704 (2009). doi:10.1002/adma.201003503.

    Article  Google Scholar 

  2. D.M. Rowe, Thermoelectrics Handbook (Macro to Nano). (2006).

  3. N. Toshima, Macromol. Symp. 186, 81 (2002).

    Article  CAS  Google Scholar 

  4. B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li, and Z. Zhang, Chin. Phys. Lett. 27, 057201 (2010). doi:10.1088/0256-307X/27/5/057201.

    Article  Google Scholar 

  5. Y.Y. Wang, K.F. Cai, and X. Yao, ACS Appl. Mater. Interfaces 2, 3170 (2011). doi:10.1021/am101287w.

    Google Scholar 

  6. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano. Lett. 10, 4664 (2010). doi:10.1021/nl102880k.

    Article  CAS  Google Scholar 

  7. D.K. Taggart, Y. Yang, S.C. Kung, T.M. McIntire, and R.M. Penner, Nano. Lett. 11, 125 (2011). doi:10.1021/nl103003d.

    Article  CAS  Google Scholar 

  8. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011). doi:10.1038/NMAT3012.

    Google Scholar 

  9. L.B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, Adv. Mater. 12, 481 (2000). doi:0935-9648/00/0704-048.

    Article  CAS  Google Scholar 

  10. J.Y. Kim, J.H. Jung, D.E. Lee, and J. Joo, Synth. Met. 126, 311 (2002). doi:10.1016/S0379-6779(01)00576-8.

    Article  CAS  Google Scholar 

  11. J.Y. Ouyang, C.W. Chu, F.C. Chen, Q.F. Xu, and Y. Yang, Adv. Funct. Mater. 15, 203 (2005). doi:10.1002/adfm.200400016.

    Article  CAS  Google Scholar 

  12. J. Grodzinski, Polym. Adv. Technol. 13, 615 (2002). doi:10.1002/pat.285.

    Article  Google Scholar 

  13. S. Kirchmeyer and K. Reuter, J. Mater. Chem. 15, 2077 (2005). doi:10.1039/B417803N.

    Article  CAS  Google Scholar 

  14. S. De, P.E. Lyons, S. Sorel, E.M. Doherty, P.J. King, W.J. Blau, P.N. Nirmalraj, J.J. Boland, V. Scardaci, J. Joimel, and J.N. Coleman, ACS Nano. 3, 714 (2009). doi:10.1021/nn800858w.

    Article  CAS  Google Scholar 

  15. C.C. Liu, B.Y. Lu, J. Yan, J.K. Xu, R.R. Yue, Z.J. Zhu, S.Y. Zhou, X.J. Hu, Z. Zhang, and P. Chen, Synth. Met. 160, 2481 (2010). doi:10.1016/j.synthmet.2010.09.031.

    Article  CAS  Google Scholar 

  16. A.M. Nardes, M. Kemerink, M.M. Kok, E. Vinken, K. Maturova, and R.A.J. Janssen, Org. Electron. 9, 727 (2008). doi:10.1016/j.orgel.2008.05.006.

    Article  CAS  Google Scholar 

  17. Y. Xia and J. Ouyang, ACS Appl. Mater. Inter. 2, 474 (2010). doi:10.1021/am900708x.

    Article  CAS  Google Scholar 

  18. M. Döbbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, Carrasco, M.J. Pedro, A. Pomposo, and D. Mecerreyes, Chem. Mater. 19, 2147 (2007). doi:10.1021/cm070398z.

    Article  Google Scholar 

  19. B. Fan, X. Mei, and J. Ouyang, Macromolecules 41, 5971 (2008). doi:10.1021/ma8012459.

    Article  CAS  Google Scholar 

  20. C.Z. Meng, C.H. Liu, and S.S. Fan, Adv. Mater. 22, 535 (2010). doi:10.1002/adma.200902221.

    Article  CAS  Google Scholar 

  21. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, and C. Yu, ACS Nano. 4, 513 (2010). doi:10.1021/nn9013577.

    Article  CAS  Google Scholar 

  22. Y. Long, Z. Chen, X. Zhang, J. Zhang, and Z. Liu, Appl. Phys. Lett. 85, 1796 (2004). doi:10.1063/1.1786370.

    Article  CAS  Google Scholar 

  23. A.G. MaciDiamid and A.J. Epstein, Synth. Met. 69, 85 (1995). doi:10.1016/0379-6779(94)02374-8.

    Article  Google Scholar 

  24. F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, and L.F. Li, Chin. Phys. Lett. 25, 2202 (2008).

    Article  CAS  Google Scholar 

  25. X. Gao, K. Uehara, D.D. Klug, and J.S. Tse, Coumput. Mater. Sci. 36, 49 (2006). doi:10.1016/j.commatsci.2004.12.080.

    Article  CAS  Google Scholar 

  26. X. Gao, K. Uehara, D.D. Klug, S. Patchkovskii, J.S. Tse, and T.M. Tritt, Phys. Rev. B 72, 125202 (2005). doi:10.1103/PhysRevB.72.125202.

    Article  Google Scholar 

  27. A.M. Higgins, S.J. Martin, P.C. Jukes, M. Geoghegan, R.A.L. Jones, S. Langridge, R. Cubitt, S. Kirchmeyer, A. Wehrum, and I. Grizzi, J. Mater. Chem. 13, 2814 (2003). doi:10.1039/B304990F.

    Article  CAS  Google Scholar 

  28. T.P. Nguyen and S.A. Vos, Appl. Surf. Sci. 221, 330 (2004). doi:10.1016/S0169-4332(03)00952-8.

    Article  CAS  Google Scholar 

  29. L. Zuppiroli, M.N. Bussac, S. Paschen, O. Chauvet, and L. Forro, Phys. Rev. B 50, 5196 (1994). doi:10.1103/PhysRevB.50.5196.

    Article  CAS  Google Scholar 

  30. A.M. Nardes, R.A.J. Janssen, and M. Kemerink, Adv. Funct. Mater. 18, 865 (2008). doi:10.1002/adfm.200700796.

    Article  CAS  Google Scholar 

  31. Y. Shao, G.C. Bazan, and J.H. Heeger, Adv. Mater. 19, 365 (2007). doi:10.1002/adma.200602087.

    Article  CAS  Google Scholar 

  32. A. Balandin and K.L. Wang, J. Appl. Phys. 84, 6149 (1998). doi:10.1063/1.368928.

    Article  CAS  Google Scholar 

  33. H. Huang and P.G. Macormick, J. Alloys Comp. 256, 258 (1997). doi:10.1016/S0925-8388(96)03010-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Xu, J., Lu, B. et al. Simultaneous Increases in Electrical Conductivity and Seebeck Coefficient of PEDOT:PSS Films by Adding Ionic Liquids into a Polymer Solution. J. Electron. Mater. 41, 639–645 (2012). https://doi.org/10.1007/s11664-012-1942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1942-8

Keywords

Navigation