Skip to main content
Log in

Toward a Better Understanding of the Effect of Cu Electroplating Process Parameters on Cu3Sn Voiding

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

“Kirkendall voiding” in the interfacial Cu3Sn intermetallic compound is often observed in solder joints made between Sn-containing alloys and Cu interconnect pads, during extended thermal aging or electromigration testing. It is commonly believed that voids arise from the Kirkendall effect, i.e., the imbalance of diffusion fluxes of Cu and Sn atoms in Cu3Sn. However, recent studies have demonstrated that the propensity for voiding is greatly affected by the amount of organic impurities incorporated during Cu electroplating. The level of impurities was shown to depend on various electroplating parameters, such as current density, bath temperature, bath age, etc. In this study, a general picture is proposed to provide a better understanding of the effect of electroplating process parameters on Cu3Sn voiding. The picture correlates the level of impurity incorporation to (1) the applied electroplating overpotential, and (2) the crystallographic orientation of the Cu deposit. As a first-order approximation, the picture is supported by a variety of electroplating experiments, secondary-ion mass spectroscopy (SIMS), and x-ray diffraction (XRD) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zeng, R. Stierman, T. Chui, D. Edward, K. Ano, and K.N. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  2. T. Mattila and J. Kivilahti, J. Electron. Mater. 35, 250 (2006).

    Article  CAS  Google Scholar 

  3. L. Xu, J. Pang, and F. Che, J. Electron. Mater. 37, 880 (2008).

    Article  CAS  Google Scholar 

  4. J. Yu and J. Kim, Acta Mater. 56, 5514 (2008).

    Article  CAS  Google Scholar 

  5. B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, and P.J. Ho, J. Appl. Phys. 100, 084909 (2006).

    Article  Google Scholar 

  6. J.W. Nah, J.O. Suh, and K.N. Tu, J. Appl. Phys. 100, 123513 (2006).

    Article  Google Scholar 

  7. Y.C. Liu, J.T. Chen, Y.C. Chuang, L. Ke, and S.J. Wang, Appl. Phys. Lett. 90, 112114 (2007).

    Article  Google Scholar 

  8. Y.S. Lai, Y.T. Chiu, and J. Chen, J. Electron. Mater. 37, 1624 (2008).

    Article  CAS  Google Scholar 

  9. B. Pieraggi, R.A. Rapp, F.J.J. van Loo, and J.P. Hirth, Acta Metall. Mater. 38, 1781 (1990).

    Article  CAS  Google Scholar 

  10. L. Yin and P. Borgesen, J. Mater. Res. 26, 455 (2011).

    Article  CAS  Google Scholar 

  11. D.W. Henderson, P. Borgesen, L. Yin, and P. Kondos (in preparation).

  12. A. Paul, C. Gosh, and W.J. Boettinger, Metall. Mater. Trans. A 42, 952 (2011).

    Article  CAS  Google Scholar 

  13. W. Yang, R.W. Messler, and L.E. Felton, J. Electron. Mater. 23, 250 (1994).

    Google Scholar 

  14. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  15. P.L. Liu and J.K. Shang, Scripta Mater. 53, 631 (2005).

    Article  Google Scholar 

  16. Y.W. Wang, Y.W. Lin, and C.R. Kao, Microelectron. Reliab. 49, 248 (2009).

    Article  CAS  Google Scholar 

  17. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Boca Raton: CRC, 1992), p. 79.

    Google Scholar 

  18. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, and N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008).

    Article  CAS  Google Scholar 

  19. F. Wafula, Y. Liu, L. Yin, S. Bliznakov, P. Borgesen, E.J. Cotts, and N. Dimitrov, J. Electrochem. Soc. 157, D111 (2009).

    Article  Google Scholar 

  20. Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D.W. Henderson, C. Parks, J. Wang, E.J. Cotts, and N. Dimitrov, IEEE Trans. Compon. Pack. Technol. 33, 127 (2010).

    Article  CAS  Google Scholar 

  21. F. Wafula, Y. Liu, L. Yin, S. Bliznakov, P. Borgesen, E.J. Cotts, and N. Dimitrov, J. Appl. Electrochem. 41, 469 (2011).

    Article  CAS  Google Scholar 

  22. S. Kumar, C.A. Handwerker, X. Nie, J. Smetana, D. Love, J. Watkowski, R. Martinez, and R. Parker, in Proceedings of SMTAI Conference (2008), p. 876.

  23. H.D. Merchant, W.C. Liu, L.A. Giannuzzi, and J.G. Morris, Mater. Charact. 53, 335 (2004).

    Article  CAS  Google Scholar 

  24. W. Zhang, S.H. Brongersma, T. Conard, W. Wu, M. Van Hove, W. Vandervorst, and K. Maex, Electrochem. Solid-State Lett. 8, C95 (2005).

    Article  CAS  Google Scholar 

  25. M. Stangl, V. Dittel, J. Acker, V. Hoffmann, W. Gruner, S. Strehle, and K. Wetzig, Appl. Surf. Sci. 252, 158 (2005).

    Article  CAS  Google Scholar 

  26. L. Yin, P. Kondos, P. Borgesen, Y. Liu, S. Bliznakov, F. Wafula, N. Dimitrov, D. Henderson, C. Parks, M. Gao, J. Therriault, J. Wang, and E. Cotts, in Proceedings of 59th Electronic Components and Technology Conference (ECTC) (2009), p. 406.

  27. J.P. Healy and D. Pletcher, J. Electroanal. Chem. 338, 155 (1992).

    Article  CAS  Google Scholar 

  28. Z.V. Feng, X. Li, and A.A. Gewirth, J. Phys. Chem. B 107, 9415 (2003).

    Article  CAS  Google Scholar 

  29. M. Alodan and W.H. Smyrl, J. Electrochem. Soc. 145, 957 (1998).

    Article  CAS  Google Scholar 

  30. T.P. Moffat, D. Wheeler, and D. Josell, J. Electrochem. Soc. 151, C262 (2004).

    Article  CAS  Google Scholar 

  31. J.O’.M. Bockris, A.K.N. Reddy, and M. Gamboa-Aldeco, Morden Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed. (New York: Kluwer, 2000), p. 974.

    Google Scholar 

  32. C.S. Barrett and T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles, and Data (Oxford: Pergamon, 1980), p. 204.

    Google Scholar 

  33. T. Swanson, Natl. Bur. Stand. (U.S.) Circ. 539,1,15 (1953).

  34. Z.D. Schultz, Z. Feng, M.E. Biggin, and A.A. Gewirth, J. Electrochem. Soc. 153, C97 (2006).

    Article  CAS  Google Scholar 

  35. M.J. Willey and A.C. West, J. Electrochem. Soc. 154, C156 (2007).

    Article  Google Scholar 

  36. M. Tan, C. Guymon, D.R. Wheeler, and J.N. Harb, J. Electrochem. Soc. 154, D78 (2007).

    Article  CAS  Google Scholar 

  37. C. Liu, Y. Wang, M. Tsai, H. Feng, S. Chang, and G. Hwang, J. Vac. Sci. Technol. A 23, 658 (2005).

    Article  CAS  Google Scholar 

  38. S. Chang, J. Shieh, B. Dai, M. Feng, and Y. Li, J. Electrochem. Soc. 149, G535 (2002).

    Article  CAS  Google Scholar 

  39. M. Yoon, Y. Park, and Y. Joo, Thin Solid Films 408, 230 (2002).

    Article  CAS  Google Scholar 

  40. A. Hamelin, T. Vitanov, E. Sevastyanov, and A. Popov, J. Electroanal. Chem. 145, 225 (1983).

    CAS  Google Scholar 

  41. W.P. Dow, M.Y. Yen, W. Lin, and S. Ho, J. Electrochem. Soc. 152, C769 (2005).

    Article  Google Scholar 

  42. S. Kim, J. Jang, J. Lee, and D.J. Duquette, Electrochim. Acta 52, 5258 (2007).

    Article  CAS  Google Scholar 

  43. B. Hong, C. Jiang, and X. Wang, Powder Diffr. 22, 324 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Wafula, F., Dimitrov, N. et al. Toward a Better Understanding of the Effect of Cu Electroplating Process Parameters on Cu3Sn Voiding. J. Electron. Mater. 41, 302–312 (2012). https://doi.org/10.1007/s11664-011-1764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1764-0

Keywords

Navigation