Skip to main content
Log in

Recrystallization and Precipitate Coarsening in Pb-Free Solder Joints During Thermomechanical Fatigue

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The recrystallization of β-Sn profoundly affects deformation and failure of Sn-Ag-Cu solder joints in thermomechanical fatigue (TMF) testing. The numerous grain boundaries of recrystallized β-Sn enable grain boundary sliding, which is absent in as-solidified solder joints. Fatigue cracks initiate at, and propagate along, recrystallized grain boundaries, eventually leading to intergranular fracture. The recrystallization behavior of Sn-Ag-Cu solder joints was examined in three different TMF conditions for five different ball grid array component designs. Based on the experimental observations, a TMF damage accumulation model is proposed: (1) strain-enhanced coarsening of secondary precipitates of Ag3Sn and Cu6Sn5 starts at joint corners, eventually allowing recrystallization of the Sn grain there as well; (2) coarsening and recrystallization continue to develop into the interior of the joints, while fatigue crack growth lags behind; (3) fatigue cracks finally progress through the recrystallized region. Independent of the TMF condition, the recrystallization appeared to be essentially complete after somewhat less than 50% of the characteristic life, while it took another 50% to 75% of the lifetime for a fatigue crack to propagate through the recrystallized region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Henderson, J.J. Woods, T.A. Gosselin, and J. Bartelo, et al., J. Mater. Res. 19, 1608 (2004).

    Article  CAS  Google Scholar 

  2. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  CAS  Google Scholar 

  3. D.W. Henderson, T.A. Gosselin, A. Sarkhel, and S.K. Kang, et al., J. Mater. Res. 17, 2775 (2002).

    Article  CAS  Google Scholar 

  4. L. Lehman, S. Athavale, T. Fullem, and A. Giamis, et al., J. Electron. Mater. 33, 1429 (2004).

    Article  CAS  Google Scholar 

  5. A. Rosenberg and W.C. Winegard, Acta Metall. 2, 342 (1954).

    Article  Google Scholar 

  6. L. Lehman, Y. Xing, T. Bieler, and E. Cotts, Acta Mater. 58, 3546 (2010).

    Article  CAS  Google Scholar 

  7. P. Borgesen, T. Bieler, L. Lehman, and E. Cotts, MRS Bull. 32, 360 (2007).

    Article  Google Scholar 

  8. T. Bieler, H. Jiang, L. Lehman, T. Kirkpatrick, E. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  CAS  Google Scholar 

  9. B. Arfaei, Y. Xing, J. Woods, J. Wolcotts, P. Tumne, P. Borgesen, and E. Cotts, in Proceedings of the 58th Electronic Components & Technology Conference (2008), pp. 459–465.

  10. B. Arfaei and E. Cotts, J. Electron. Mater. 38, 2617 (2009).

    Article  CAS  Google Scholar 

  11. V. Venkatadri, L. Yin, Y. Xing, E. Cotts, K. Srihari, and P. Borgesen, in Proceedings of the 59th Electronic Components & Technology Conference (2009), pp. 398–405.

  12. Y. Zhang, Z. Cai, J.C. Suhling, P. Lall, and M.J. Bozack, in Proceedings of the 58th Electronic Components & Technology Conference (2008), pp. 99–112.

  13. S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. 45, 1383 (2004).

    Article  CAS  Google Scholar 

  14. U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  CAS  Google Scholar 

  15. J. Sundelin, S. Nurmib, and T. Lepistö, Mater. Sci. Eng. A 474, 201 (2008).

    Article  Google Scholar 

  16. T. Mattila and J. Kivilahti, IEEE Trans. Compon. Packag. Technol. 33, 629 (2010).

    Article  CAS  Google Scholar 

  17. F. Yang and J.C.M. Li, J. Mater. Sci. Mater. Electron. 18, 191 (2007).

    Article  CAS  Google Scholar 

  18. M.A. Matin, E.W.C. Coenen, W.P. Vellinga, and M.G.D. Geers, Scripta Mater. 53, 927 (2005).

    Article  CAS  Google Scholar 

  19. M.A. Matin, W.P. Vellinga, and M. Geers, Mater. Sci. Eng. A 445, 73 (2007).

    Article  Google Scholar 

  20. M. Erinc, P.J.G. Schreurs, and M.G.D. Geers, Mech. Mater. 40, 780 (2008).

    Article  Google Scholar 

  21. X.W. Liu and W.J. Plumbridge, J. Electron. Mater. 36, 1111 (2007).

    Article  CAS  Google Scholar 

  22. C.S. Barrett, Metallurgy and Metallurgical Engineering Series, 2nd ed., ed. R.F. Mehl (New York: McGraw-Hill, 1952), p. 337.

    Google Scholar 

  23. P. Borgesen, E. Al-Momani, and M. Meilunas, in Proceedings of SMTA International Conference (2009), pp. 377–383.

  24. S. Kang, P. Lauro, D. Shih, D. Henderson, T. Gosselin, et al. in Proceedings of the 54th Electronic Components & Technology Conference (2004), pp. 661–667.

  25. N. Pan, G. Henshall, R. Lewis, E. Benedetto, and J. Rayner, in Proceedings of SMTA International Conference (2005), pp. 876–883.

  26. A. Qasaimeh, Y Jaradat, L. Wentlent, L. Yang, et al. in Proceedings of the 61st Electronic Components & Technology Conference (2011).

  27. L. Wentlent, et al. in Proceedings of SMTA International Conference (2011).

  28. A.U. Telang, T.T. Bieler, and M.A. Crimp, Mater. Sci. Eng. A 421, 22 (2006).

    Article  Google Scholar 

  29. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Boca Raton: CRC, 1992), pp. 116–142.

    Google Scholar 

  30. P. Lauro, S.K. Kang, W.K. Choi, and D.Y. Shin, J. Electron. Mater. 35, 250 (2006).

    Article  Google Scholar 

  31. Dutta, J. Electron. Mater. 32, 201 (2003).

    Article  CAS  Google Scholar 

  32. I. Dutta, D. Pan, R.A. Marks, and S.G. Jahav, Mater. Sci. Eng. A 410–411, 48 (2005).

    Google Scholar 

  33. S. Allen, M. Notis, R. Chromik, and R. Vinci, J. Mater. Res. 19, 1417 (2004).

    Article  Google Scholar 

  34. S. Allen, M. Notis, R. Chromik, and R. Vinci, et al., J. Mater. Res. 19, 1425 (2004).

    Article  CAS  Google Scholar 

  35. R.D. Doherty, D.A. Hughes, F.J. Humphreys, and J.J. Jonas, et al., Mater. Sci. Eng. A 238, 219 (1997).

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), p. 287.

    Google Scholar 

  37. F.J. Humphreys, Acta Metall. 25, 1323 (1977).

    Article  CAS  Google Scholar 

  38. F.J. Humphreys and P.N. Kalu, Acta Metall. 35, 2815 (1987).

    Article  CAS  Google Scholar 

  39. F.J. Humphreys, Scripta Mater. 43, 591 (2000).

    Article  CAS  Google Scholar 

  40. N. Stanford and M. Ferry, in Proceedings of the 21st Risø International Symposium on Materials Science: RecrystallizationFundamental Aspects and Relations to Deformation Microstructure (2000).

  41. W. Xu, M. Ferry, J.M. Cairney, and F.J. Humphreys, Acta Mater. 55, 5157 (2007).

    Article  CAS  Google Scholar 

  42. M. Ferry and F.J. Humphreys, Acta Mater. 44, 3089 (1996).

    Article  CAS  Google Scholar 

  43. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A 39A, 349 (2008).

    Article  CAS  Google Scholar 

  44. J. Gong, P.P. Conway, C. Liu, and V.V. Silberschmidt, J. Electron. Mater. 38, 2429 (2009).

    Article  CAS  Google Scholar 

  45. T.M.K. Korhonen, L. Lehman, M.A. Korhonen, and D.W. Henderson, J. Electron. Mater. 36, 173 (2007).

    Article  CAS  Google Scholar 

  46. A. Mayyas, L. Yin and P. Borgesen, Proceedings of the 2009 ASME Congress and Exposition (2009), pp. 319– 326.

  47. F.J. Humphreys and J.W. Martin, Acta Metall. 14, 775 (1966).

    Article  CAS  Google Scholar 

  48. I. Baker and J.W. Martin, J. Mater. Sci. 15, 1533 (1980).

    Article  CAS  Google Scholar 

  49. L. Yin, B. Arfaei and P. Borgesen, unpublished results.

  50. J.H. Lau, Solder Joint Reliability: Theory and Applications (Englewood: Van Nostrand Reinhold, 1991), p. 251.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Wentlent, L., Yang, L. et al. Recrystallization and Precipitate Coarsening in Pb-Free Solder Joints During Thermomechanical Fatigue. J. Electron. Mater. 41, 241–252 (2012). https://doi.org/10.1007/s11664-011-1762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1762-2

Keywords

Navigation