Skip to main content
Log in

Three-Dimensional Electromagnetic and Electrical Simulation of HgCdTe Pixel Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the combined electromagnetic and electrical response of HgCdTe-based pixel detector arrays with different geometries. We have computed the propagation of the optical signal in the detector structure by solving Maxwell’s curl equations using a finite-difference time-domain approach. From the field distribution inside the device, we have evaluated the optical carrier generation rate. Using this information in a three-dimensional (3D) numerical model based on a drift–diffusion approach, we have computed the quantum efficiency and photoresponse of a number of pixel geometries. Specifically, we have analyzed the response of both mesa-type and planar detector arrays with and without CdZnTe substrate. Furthermore, the electromagnetic response has also been evaluated for different metal contact dimensions and configurations. It is found that, for mesa-type arrays without the substrate, significant reflection effects take place in the device that lead to resonance peaks in the photoresponse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gravrand, J. Desplanche, C. Delbégue, G. Mathieu, and J. Rothman, J. Electron. Mater. 35, 1159 (2006).

    Article  CAS  Google Scholar 

  2. O. Gravrand and S. Gidon, J. Electron. Mater. 37, 1205 (2008).

    Article  CAS  Google Scholar 

  3. G. Pelosi, R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves (Norwood, MA: Artech House, 1998).

    Google Scholar 

  4. A. Taflove, Computation Electrodynamics: The Finite- Difference Time-Domain Method (Artech House Inc., 1995).

  5. K.S. Yee, IEEE Trans. Antennas Propagation 14, 302 (1966).

    Article  Google Scholar 

  6. P. Capper, ed., Properties of Narrow Gap Cadmium-based Compounds, EMIS Datareviews Series, Vol. 10. (London: INSPEC, 1994).

    Google Scholar 

  7. C. Hougen, J. Appl. Phys. 66, 3763 (1989).

    Article  CAS  Google Scholar 

  8. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).

    Article  Google Scholar 

  9. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  CAS  Google Scholar 

  10. M. Penna, A. Marnetto, F. Bertazzi, E. Bellotti, and M. Goano, J. Electron. Mater. 38, 1717 (2009).

    Article  CAS  Google Scholar 

  11. M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, J. Appl. Phys. 102, 083709 (2007).

    Article  Google Scholar 

  12. F. Bertazzi, M. Moresco, M. Penna, M. Goano, and E. Bellotti, J. Electron. Mater. 39, 912 (2010).

    Article  CAS  Google Scholar 

  13. http://www.Synopsys.com

  14. http://www.lumerical.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bellotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keasler, C.A., Bellotti, E. Three-Dimensional Electromagnetic and Electrical Simulation of HgCdTe Pixel Arrays. J. Electron. Mater. 40, 1795–1801 (2011). https://doi.org/10.1007/s11664-011-1644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1644-7

Keywords

Navigation