Skip to main content
Log in

Nanostructured Interfaces for Thermoelectrics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c p :

Heat capacity, J kg−1 K−1

C v :

Volumetric heat capacity, J m−3 K−1

D :

Bond line thickness, μm

f eff :

Effective fill fraction of CNT film, %

G :

Shear modulus, GPa

k :

Thermal conductivity, W m−1 K−1

L :

Joint length, m

R :

Thermal resistivity, m K W−1

R′′:

Thermal resistance, m2 K W−1

ΔT :

Temperature excursion, K

α :

Thermal expansion coefficient, 10−6 K−1

ρ :

Density of CNT, kg m−3

σ :

Maximum shear stress, GPa

1:

Thermal expansion coefficient of layer 1

2:

Thermal expansion coefficient of layer 2

CNT-Pt:

Boundary between CNT film and Pt metal layer

CNT-Sub:

Boundary between CNT film and substrate

eff:

Effective

ind:

Individual

tot:

Total

References

  1. V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. Van Der Walde, L. Maricic, and A. Sayir, J. Electron. Mater. 38, 1433 (2009).

    Article  CAS  ADS  Google Scholar 

  2. M. Srinivasan and S.M. Praslad, Proceedings of the International Conference on Power Electronics and Drive Systems (Kualu Lumpur, Malaysia), vol. 2, pp. 977–982, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ (2005).

  3. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Tran. 45, 5159 (2002).

    Article  MATH  Google Scholar 

  4. G. Min and D.M. Rowe, Solid State Electron. 43, 923 (1999).

    Article  CAS  ADS  Google Scholar 

  5. T.J. Hendricks and J.A. Lustbader, Proceedings of the 21st International Conference on Thermoelect. (2002).

  6. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nano 4, 235 (2009).

    Article  CAS  Google Scholar 

  7. A. Pettes, M. Hodes, and K. Goodson, Proc. IPACK2007 2, 221 (2007).

  8. S. LeBlanc, Y. Gao, and K. Goodson, Proceedings of IMECE 2008, October 31–November 6, Boston, Massachusetts (2008).

  9. T. Clin, S. Turenne, D. Vasilevskiy, and R. Masut, J. Electron. Mater. 38, 994 (2009).

    Article  CAS  ADS  Google Scholar 

  10. Y. Hori, D. Kusano, T. Ito, and K. Izumi, Proceedings of the 18th International Conference on Thermoelect., p. 328 (1999).

  11. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Article  CAS  Google Scholar 

  12. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, J. Heat Transf. 130, 052401 (2008).

    Article  Google Scholar 

  13. T. Tong, Z. Yang, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, IEEE Trans. Compon. Pack. Technol. 30, 92 (2007).

    Article  CAS  Google Scholar 

  14. O. Yaglioglu, R. Martens, A. Hart, and A. Slocum, Adv. Mater. 20, 357 (2008).

    Article  CAS  Google Scholar 

  15. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, and H. Dai, Proc. Natl Acad. Sci. USA 102, 16141 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  16. E.M. Petrie, Handbook of Adhesives and Sealants (New York: McGraw-Hill, 2000).

    Google Scholar 

  17. J. Vázquez, M.A. Sanz-Bobi, R. Palacios, and A. Arenas, Proceedings of the 7th European Workshop Thermoelect. (2002).

  18. C.M. Bhandari and D.M. Rowe, Contemp. Phys. 21, 219 (1980).

    Article  CAS  ADS  Google Scholar 

  19. R.S. Ruoff and D.C. Lorents, Carbon 33, 925 (1995).

    Article  CAS  Google Scholar 

  20. Z.L. Wang, D.W. Tang, X.B. Li, X.H. Zheng, W.G. Zhang, L.X. Zheng, Y.T. Zhu, A.Z. Jin, H.F. Yang, and C.Z. Gu, Appl. Phys. Lett. 91, 123119 (2007).

    Article  ADS  Google Scholar 

  21. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005).

    Article  ADS  PubMed  Google Scholar 

  22. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  23. C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  24. E. Pop, D. Mann, Q. Wang, K.E. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  25. B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, and H. Hu, J. Appl. Phys. 101, 054313 (2007).

    Article  ADS  Google Scholar 

  26. X.J. Hu, A.A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, J. Heat Transf. 128, 1109 (2006).

    Article  CAS  Google Scholar 

  27. S. Shaikh, K. Lafdi, and E. Silverman, Carbon 45, 695 (2007).

    Article  CAS  Google Scholar 

  28. Y.M. Choi, S. Lee, H.S. Yoon, M.S. Lee, H. Kim, I. Han, Y. Son, I.S. Yeo, U.I. Chung, and J.T. Moon, 6th IEEE Conference on Nanotechnology (2006).

  29. D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, and G. Chen, Phys. Lett. A 329, 207 (2004).

    Article  MATH  CAS  ADS  Google Scholar 

  30. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, and J.Q. Li, Phys. Rev. B 66, 165440 (2002).

    Article  ADS  Google Scholar 

  31. X. Wang, Z. Zhong, and J. Xu, J. Appl. Phys. 97, 064302 (2005).

    Article  ADS  Google Scholar 

  32. S.K. Pal, Y. Son, T. Borca-Tasciuc, D.A. Borca-Tasciuc, S. Kar, R. Vajtai, and P.M. Ajayan, J. Mater. Res. 23, 2099 (2008).

    Article  CAS  ADS  Google Scholar 

  33. T. Borca-Tasciuc, S. Vafaei, D.A. Borca-Tasciuc, B.Q. Wei, R. Vajtai, and P.M. Ajayan, J. Appl. Phys. 98, 054309 (2005).

    Article  ADS  Google Scholar 

  34. I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. Pan, H. Cui, R. Jin, J. Howe, and D.B. Geohegan, Appl. Phys. Lett. 89, 223110 (2006).

    Article  ADS  Google Scholar 

  35. H. Xie, A. Cai, and X. Wang, Phys. Lett. A 369, 120 (2007).

    Article  CAS  ADS  Google Scholar 

  36. T. Tong, A. Majumdar, Z. Yang, A. Kashani, L. Delzeit, and M. Meyyappan, ITHERM ’06 (2006).

  37. Y. Son, S.K. Pal, T. Borca-Tasciuc, P.M. Ajayan, and R.W. Siegel, J. Appl. Phys. 103, 024911 (2008).

    Article  ADS  Google Scholar 

  38. J. Xu and T.S. Fisher, Int. J. Heat Mass Trans. 49, 1658 (2006).

    Article  CAS  Google Scholar 

  39. A.M. Marconnet, personal communication, Dept. of Mechanical Engineering, Stanford University (2009).

  40. H.L. Zhang, J.F. Li, K.F. Yao, and L.D. Chen, J. Appl. Phys. 97, 114310 (2005).

    Article  ADS  Google Scholar 

  41. H.L. Zhang, J.F. Li, B.P. Zhang, K.F. Yao, W.S. Liu, and H. Wang, Phys. Rev. B 75, 205407 (2007).

    Article  ADS  Google Scholar 

  42. A. Shakouri, Proc. IEEE 94, 1613 (2006).

    Article  CAS  Google Scholar 

  43. B.M. Clemens, G.L. Eesley, and C.A. Paddock, Phys. Rev. B 37, 1085 (1988).

    Article  CAS  ADS  Google Scholar 

  44. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by Bosch LLC, the Precourt Energy Efficiency Center, and the National Science Foundation. Special thanks go to Ali Shakouri’s group at UC Santa Cruz for the SiGe substrates and Molecular Nanosystems Inc. for their CNT fabrication support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Marconnet, A.M., Panzer, M.A. et al. Nanostructured Interfaces for Thermoelectrics. J. Electron. Mater. 39, 1456–1462 (2010). https://doi.org/10.1007/s11664-010-1256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1256-7

Keywords

Navigation