Skip to main content
Log in

Ba-Cu-Si Clathrates: Phase Equilibria and Crystal Chemistry

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The formation and crystal chemistry of ternary clathrates in the Ba-Cu-Si system were investigated on a series of compounds Ba8Cu x Si46−x (3 ≤ x ≤ 8). The phase diagram around the clathrate phase was constructed at 800°C, revealing a homogeneity range from Ba8Cu3.4Si42.6 to Ba8Cu4.8Si41.2. Structural investigations confirmed that the clathrates in this system crystallize with cubic primitive symmetry, in the type I clathrate structure (space group Pm \( \bar{3} \) n). Single-crystal x-ray diffraction indicates that the Cu atoms partially substitute for Si atoms on the 6d site; no vacancies are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Disalvo, Science 285, 703 (1999). doi:10.1126/science.285.5428.703.

    Article  CAS  PubMed  Google Scholar 

  2. E.B. Lon, Science 321, 1457 (2008). doi:10.1126/science:1158899.

    Article  Google Scholar 

  3. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008). doi:10.1126/science:1159725.

    Article  CAS  ADS  PubMed  Google Scholar 

  4. A. Majumdar, Science 303, 777 (2004). doi:10.1126/science:1093164.

    Article  CAS  PubMed  Google Scholar 

  5. G.A. Slack, New Materials and Performance Limits for Thermoelectric Cooling.CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 107.

    Google Scholar 

  6. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanazidis, Science 303, 818 (2004). doi:10.1126/science:1092963.

    Article  CAS  ADS  PubMed  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001). doi:10.1038/35098012.

    Article  CAS  ADS  PubMed  Google Scholar 

  8. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002). doi:10.1126/science:1072886.

    Article  CAS  ADS  PubMed  Google Scholar 

  9. G.J. Fnyder and E.S. Toberer, Nature 7, 105 (2008). doi:10.1038/nmat2090.

    Google Scholar 

  10. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000). doi:10.1063/1.373469.

    Article  CAS  ADS  Google Scholar 

  11. B.C. Chakoumakos, B.C. Sales, D.G. Mandrus, and G.S. Nolas, J. Alloys. Compd. 296, 80 (2000). doi:10.1016/S0925-8388(99)00531-9.

    Article  CAS  Google Scholar 

  12. J.F. Meng, N.V. Charda Shekar, J.V. Badding, and G.S. Nolas, J. Appl. Phys. 89, 1730 (2001). doi:10.1063/1.334366.

    Article  CAS  ADS  Google Scholar 

  13. G. Cordier and P. Woll, J. Less Common Met. 169, 291 (1991). doi:10.1016/0022-5088(91)90076-G.

    Article  CAS  Google Scholar 

  14. Ya. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noel, J. Phys. Condens. Matter 14, 7991 (2002). doi:10.1088/0953-8984/14/34/318.

    Article  CAS  ADS  Google Scholar 

  15. H.-U. Schuster and W. Westerhaus, Z. Naturf. b 30, 805 (1975).

    Google Scholar 

  16. W. Westerhaus and H.-U. Schuster, Z. Naturf. b 32, 1365 (1977).

    Google Scholar 

  17. H. Schäfer, Annu. Rev. Mater. Sci. 15, 1 (1985). doi:10.1088/0953-8984/14/34/318.

    Article  ADS  Google Scholar 

  18. Y. Li, Y. Liu, N. Chen, G. Cao, Z. Feng, and J.H. Ross Jr., Phys. Lett. A 345, 398 (2005). doi:10.1016/j.physleta.2005.07.015.

    Article  MATH  CAS  ADS  Google Scholar 

  19. M. Christensen and B.B. Iversen, Chem. Mater. 19, 4896 (2007). doi:10.1021/cm071435p.

    Article  CAS  Google Scholar 

  20. L. Yang, Y. Wang, T. Liu, T.D. Hu, B.X. Li, K. Stahl, S.Y. Chen, M.Y. Li, P. Shen, G.L. Lu, Y.W. Wang, and J.Z. Jiang, J. Solid State Chem. 178, 1773 (2005). doi:10.1016/j.jssc.2005.03.015.

    Article  CAS  ADS  Google Scholar 

  21. K. Akai, K. Koga, K. Oshiro, and M. Matsuum, Trans. Mater. Res. Soc. Jpn. 29, 3647 (2004).

    CAS  Google Scholar 

  22. K. Akai, G. Zhao, K. Koga, K. Oshiro, and M. Matsuura, Proceedings of 24th International Conference on Thermoelectrics, Beijing, China (Piscataway, NJ, USA: IEEE, 2005), pp. 230–233.

  23. K. Akai, K. Koga, and M. Matsuura, Mater. Trans. 48, 684 (2007). doi:10.2320/matertrans.48.684.

    Article  CAS  Google Scholar 

  24. B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, and D. Mandrus, Phys. Rev. B 64, 245113 (2001). doi:10.1103/PhysRevB.64.214404.

    Article  ADS  Google Scholar 

  25. V. Pacheco, W. Carrillo-Cabrera, V.H. Tran, S. Paschen, and Y. Grin, Phys. Rev. Lett. 87, 099601 (2001). doi:10.1103/PhysRevLett.87.099601.

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Nonius Kappa CCD Program Package, COLLECT, DEZO, SCALEPACK, SORTAV (Delft, The Netherlands: Nonius, 1998).

  27. G.M. Sheldrick, Program for Crystal Structure Refinement (Germany: University of Göttingen; 1997), Windows version by McArdle, Natl. Univ. Ireland, Galway.

  28. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, E. Bauer, R. Lackner, E. Roanian, and G. Giester, J. Phys. Soc. Jpn. 77, 54 (2008).

    Google Scholar 

  29. N. Melnychenko-Koblyuk, A. Grytsiv, S. Berger, H. Kaldara, H. Michor, F. Röhrbacher, E. Royanian, E. Bauer, P. Rogl, H. Schmid, and G. Giester, J. Phys. Condens. Matter 19, 046203 (2007). doi:10.1088/0953-8984/19/4/046203.

    Article  ADS  Google Scholar 

  30. N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldara, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, J. Phys. Condens. Matter 19, 216223 (2007). doi:10.1088/0953-8984/19/21/216223.

    Article  ADS  Google Scholar 

  31. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B 76, 144118 (2007). doi:10.1103/PhysRevB.76.144118.

    Article  ADS  Google Scholar 

  32. N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B Condens. Matter Mater. Phys. 76, 195124/1 (2007). doi:10.1103/PhysRevB.76.195124.

    CAS  ADS  Google Scholar 

  33. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Picooli, A.J. Schultz, and S.M. Kauzlarich, Inorg. Chem. 45, 9381 (2006). doi:10.1021/ic061241w.

    Article  CAS  PubMed  Google Scholar 

  34. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TZPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, ed. Springer (1994).

Download references

Acknowledgements

We thank M. Waas for assistance in the SEM/EDX investigation, and A. Prokofiev, A. Grytsiv, and S. Laumann for assistance with several experiments and fruitful discussions. This work was supported by FFG Project THECLA (815648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Paschen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Giester, G., Bauer, E. et al. Ba-Cu-Si Clathrates: Phase Equilibria and Crystal Chemistry. J. Electron. Mater. 39, 1634–1639 (2010). https://doi.org/10.1007/s11664-010-1253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1253-x

Keywords

Navigation