Skip to main content
Log in

Doping and Defect Structure of Tetradymite-Type Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nonstoichiometry of tetradymite-type crystals A V2 B VI3 that are grown from stoichiometric melts leads to the formation of native defects in the crystal lattice (predominantly antisite defects, A −1B and vacancies V +2B in the anion sublattice). This paper summarizes the basic ideas concerning a point defect model in A V2 B VI3 crystals. It turns out that a variety of doping elements interact with the native defects. Such interactions alter the concentration of free charge carriers, affect the doping efficiency, and modify the transport properties. Detailed understanding of the defect structure in tetradymite-type crystals is very important as it impacts on the efficiency of these materials when used as active elements in thermoelectric coolers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Krebs, Grundzüge der Anorganishen Kristallchemie (Stuttgart: F. Enke Verlag, 1968), p. 239.

    Google Scholar 

  2. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectric Basic Principles and New Materials Developments (Berlin: Springer, 2001), p. 111.

    Google Scholar 

  3. G.R. Miller and C.-Y. Li, J. Phys. Chem. Solids 26, 173 (1956).

    Article  ADS  Google Scholar 

  4. R.F. Brebrick, J. Phys. Chem. Solids 30, 719 (1969).

    Article  CAS  ADS  Google Scholar 

  5. G. Offergeld and J. van Cakenberghe, J. Phys. Chem. Solids 11, 310 (1959).

    Article  CAS  ADS  Google Scholar 

  6. C.B. Satterthwaite and R.W. Ure, Phys. Rev. 108, 1164 (1957).

    Article  CAS  ADS  Google Scholar 

  7. L.V. Poretskaya, N.Kh. Abrikosov, and V.M. Glazov, Zh. Neorg. Khim 8, 1196 (1963).

    CAS  Google Scholar 

  8. F.A. Kröger, J. Phys. Chem. Solids 7, 276 (1958).

    Article  ADS  Google Scholar 

  9. B.T. Kolomiets and T.F. Nazarova, Fiz. Tverd. Tela 2, 22 (1959).

    CAS  Google Scholar 

  10. H. Gobrecht, K.F. Boerets, and G. Pantzer, Z. Phys. 177, 68 (1964).

    Article  CAS  ADS  Google Scholar 

  11. I.F. Bogatyrev, A. Vasko, L. Tichy, and J. Horak, Phys. Status Solidi A 22, K63 (1973).

    ADS  Google Scholar 

  12. J. Horak, P. Lostak, C. Drasar, J.S. Dyck, Z. Zhou, and C. Uher, J. Solid State Chem. 178, 2907 (2005).

    Article  CAS  ADS  Google Scholar 

  13. P. Lostak, C. Drasar, J. Horak, Z. Zhou, J.S. Dyck, and C. Uher, J. Phys. Chem. Solids 67, 1457 (2006).

    Article  CAS  ADS  Google Scholar 

  14. J. Bludska, I. Jakubec, C. Drasar, P. Lostak, and J. Horak, Philos. Mag. 87, 325 (2007).

    Article  CAS  ADS  Google Scholar 

  15. N. Frangis, S. Kuypers, C. Manolikas, J. van Landuyt, and S. Amelinckx, Solid State Commun. 69, 8 (1989).

    Article  Google Scholar 

  16. N. Frangis, S. Kuypers, C. Manolikas, G. van Tendeloo, J. van Landuyt, and S. Amelinckx, Solid State Chem. 84, 314 (1990).

    Article  CAS  ADS  Google Scholar 

  17. C. Drasar, I. Klichova, L. Koudelka, and P. Lostak, Cryst. Res. Technol. 31, 805 (1996).

    Article  CAS  Google Scholar 

  18. P. Lostak, C. Drasar, D. Bachan, L. Benes, and A. Krejcova, Radiat. Eff. Defects Solid (accepted).

  19. T. Plechacek, J. Navratil, J. Horak, D. Bachan, A. Krejcova, and P. Lostak, Solid State Ionics 177, 3513 (2007).

    Article  CAS  Google Scholar 

  20. D. Bachan, A. Hovorkova, C. Drasar, A. Krejcova, L. Benes, J. Horak, and P. Lostak, J. Phys. Chem. Solids 68, 1079 (2007).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Drasar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drasar, C., Lostak, P. & Uher, C. Doping and Defect Structure of Tetradymite-Type Crystals. J. Electron. Mater. 39, 2162–2164 (2010). https://doi.org/10.1007/s11664-009-0986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0986-x

Keywords

Navigation