Skip to main content
Log in

Power Generator Modules of Segmented Bi2Te3 and ErAs:(InGaAs)1−x (InAlAs) x

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of ErAs:InGaAlAs were characterized by variable-temperature measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient from 300 K to 600 K, which shows that the ZT(\(=\alpha^{2}\sigma T/\kappa\), where \(\alpha, \sigma, \kappa,\) and T are the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature, respectively) of the material is greater than 1 at 600 K. Power generator modules of segmented elements of 300 μm Bi2Te3 and 50 μm thickness ErAs:(InGaAs)1−x (InAlAs) x were fabricated and characterized. The segmented element is 1 mm × 1 mm in area, and each segment can work at different temperature ranges. An output power up to 5.5 W and an open-circuit voltage over 10 V were measured. Theoretical calculations were carried out and the results indicate that the performance of the thermoelectric generator modules can be improved further by improving the thermoelectric properties of the element material, and reducing the electrical and thermal parasitic losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe D.M. (2005) Thermoelectrics Handbook Macro to Nano. CRC, New York.

    Google Scholar 

  2. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993). doi:10.1103/PhysRevB.47.16631.

    Article  CAS  Google Scholar 

  3. M.V. Simkin and G.D. Mahan, Phys. Rev. Lett. 84, 927 (2000), Medline. doi:10.1103/PhysRevLett.84.927.

  4. J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005). doi:10.1063/1.1992662.

    Article  Google Scholar 

  5. C. Dames and G. Chen, J. Appl. Phys. 95, 682 (2004). doi:10.1063/1.1631734.

    Article  CAS  Google Scholar 

  6. T.C. Harman, P.J. Taylor, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 29, L1 (2000). doi:10.1007/s11664-000-0117-1.

    Article  CAS  Google Scholar 

  7. T.C. Harman, M.P. Walsh, B.E. Laforge, and G.W. Turner, J. Electron. Mater. 34, L19 (2005). doi:10.1007/s11664-005-0083-8.

    Article  CAS  Google Scholar 

  8. T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.I. Wu, E. Quarez, J. Androulakis, P.F.P. Poudeu, J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E.J. Timm, H. Schock, F. Ren, J. Johnson, and E.D. Case, J. Electron. Mater. 36, 704 (2007). doi:10.1007/s11664-007-0174-9.

    Article  CAS  Google Scholar 

  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001), Medline. doi:10.1038/35098012.

  10. G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z. Bian, Y. Zhang, A. Shakouri, S.L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007). doi:10.1063/1.2433751.

    Article  Google Scholar 

  11. A. Shakouri and J.E. Bowers, Appl. Phys. Lett. 71, 1234 (1997). doi:10.1063/1.119861.

    Article  CAS  Google Scholar 

  12. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103/1 (2004).

    Article  CAS  Google Scholar 

  13. D. Vashaee and A. Shakouri, J. Appl. Phys. 95, 1233 (2004). doi:10.1063/1.1635992.

    Article  CAS  Google Scholar 

  14. S.T. Huxtable, A.R. Abramson, C.L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, and E.T. Croke, Appl. Phys. Lett. 80, 1737 (2002). doi:10.1063/1.1455693.

    Article  CAS  Google Scholar 

  15. W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006). doi:10.1063/1.2207829.

    Article  Google Scholar 

  16. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006), Medline. doi:10.1103/PhysRevLett.96.045901.

    Google Scholar 

  17. G. Zeng, J.E. Bowers, J.M.O. Zide, A.C. Gossard, W. Kim, S. Singer, A. Majumdar, R. Singh, Z. Bian, Y. Zhang, and A. Shakouri, Appl. Phys. Lett. 88, 113502 (2006). doi:10.1063/1.2186387.

    Article  Google Scholar 

  18. D.C. Driscoll, M. Hanson, C. Kadow, and A.C. Gossard, Appl. Phys. Lett. 78, 1703 (2001). doi:10.1063/1.1355988.

    Article  CAS  Google Scholar 

  19. D.C. Driscoll, M.P. Hanson, E. Mueller, and A.C. Gossard, J. Crystal Growth 251, 243 (2003). doi:10.1016/S0022-0248(02)02511-3.

    Article  CAS  Google Scholar 

  20. J.M. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, and A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005). doi:10.1063/1.2043241.

    Article  Google Scholar 

  21. J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006). doi:10.1103/PhysRevB.74.205335.

    Article  Google Scholar 

  22. Z.M. Griffith (Ph.D. thesis, University of California, Santa Barbara, 2005).

  23. R. Driad, W.R. McKinnon, Z.H. Lu, and S.P. McAlister, J.␣Electr. Mater. 29, L33–L36 (2000). doi:10.1007/s11664-000-0127-z.

    Google Scholar 

  24. S. Lee, S. Song, V. Au, and K.P. Moran, in ASME/JSME Thermal Engineering Conference, vol. 4 (1995), pp. 199–206.

Download references

Acknowledgements

The authors are grateful to Dr. Thierry Caillat at Jet Propulsion Laboratory for the variable temperature measurements of the electrical conductivities of ErAs:(InGaAs)1−x (InAlAs) x samples. We also acknowledge useful discussions with Dr. Mihal Gross. This work is supported by the Office of Naval Research Thermionic Energy Conversion Center MURI, and ONR Contract N00014-05-1-0611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehong Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, G., Bahk, JH., Bowers, J. et al. Power Generator Modules of Segmented Bi2Te3 and ErAs:(InGaAs)1−x (InAlAs) x . J. Electron. Mater. 37, 1786–1792 (2008). https://doi.org/10.1007/s11664-008-0435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0435-2

Keywords

Navigation