Skip to main content
Log in

The correlation between stress relaxation and steady-state creep of eutectic Sn-Pb

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper surveys and compares creep and stress relaxation data on finegrained eutectic Sn-Pb. It examines the consistency of the available data on this extensively studied solder material and studies whether stress relaxation offers a reasonable alternative to the more laborious conventional creep tests. The data survey reveals systematic differences between the creep behavior of material that is grain-refined by cold work and recrystallization (“recrystallized”) and that refined by rapid solidification (“quenched”). The recrystallized material has the conventional three regimes of creep behavior: a high-stress region with a stress exponent, n ∼ 4–7 and an activation energy Q ∼ 80 kJ/mole (a bit below that for self-diffusion of Pb and Sn), an intermediate region with n ∼ 2 and Q ∼ 45 kJ/mole (near that for grain boundary diffusion), and a low-stress region with n ∼ 3 and Q ∼ 80 (suggesting a reversion to a bulk mechanism). The quenched material shows only two regions: a high-stress creep with a stress exponent, n ∼ 3–7, and a low-stress region with n ∼ 3. The mechanisms in both regimes have activation energies intermediate between bulk and interface values (50–70 kJ/mole). With minor exceptions, the stress relaxation data and the creep data are in reasonable agreement. Most of the exceptions seem to be related to the difficulty of capturing the full details of grain boundary creep in stress relaxation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Morris, J.F. Goldstein, and Z. Mei, “Microstructural Influences on the Mechanical Properties of Solder,” The Mechanics of Solder Alloy Interconnects, ed. D. Frear, H. Morgan, S. Burchett, and J.H. Lau (New York: ITP, 1994), pp. 7–40.

    Google Scholar 

  2. J.H. Lau, W. Nakayama, J. Prince, and C.P. Wong, Electronic Packaging; Design, Materials, Process, and Reliability (New York: McGraw Hill, 1998), pp. 222–294.

    Google Scholar 

  3. J.W. Morris, Jr. and S.H. Kang, PRICM 3, ed. M.A. Imam, R. DeNale, S. Hanada, Z. Zhong, and D.N. Lee (Warrendale, PA: TMS, 1998), pp. 2563–2567.

    Google Scholar 

  4. W.D. Brown, editor, Advanced Electronic Packaging (New York: IEEE Press, 1999).

    Google Scholar 

  5. J.H. Lau, “Solder-bumped Flip Chip Interconnect Technologies: Materials, Process, Performance and Reliability,” Flip Chip Technology, ed. J.H. Lau (New York: McGraw-Hill, 1995), pp. 123–151.

    Google Scholar 

  6. C.S. Kang and J.P. Jung, Micro Joining (Seoul, Korea: Samsung Books, 2002), pp. 94–125.

    Google Scholar 

  7. S.B. Lee and J.K. Kim, Int. J. Fatigue 19, 85 (1997).

    Article  CAS  Google Scholar 

  8. Z. Mei, D. Grivas, M.C. Shine, and J.W. Morris, Jr., J. Electron. Mater. 19, 1273 (1990).

    CAS  Google Scholar 

  9. Z. Mei, J.W. Morris, Jr., and M.C. Shine, J. Electron. Packaging 113, 109 (1991).

    Google Scholar 

  10. D. Grivas (Ph.D. Thesis, University of California-Berkeley, 1978).

  11. D.S. Stone and M.M. Rashid, “Constitutive Models,” The Mechanics of Solder Alloy Interconnects, ed. D.R. Frear, S.N. Burchett, H.S. Morgan, J.H. Lau, (New York: Van Nostrand Reinhold, 1994), pp. 87–157.

    Google Scholar 

  12. J.E. Bird, A.K. Mukherjee, and J.E. Dorn, Quantitative Relation between Properties and Microstructure (Haifa, Israel: Israel University Press, 1964), pp. 255–342.

    Google Scholar 

  13. H.N. Han, Y.K. Lee, K.W. Oh, and D.N. Lee, Mater. Sci. Eng. A206, 81 (1996).

    CAS  Google Scholar 

  14. J. Weertman, J. Appl. Phys. 26, 1213 (1955).

    Article  CAS  Google Scholar 

  15. O.D. Sherby and J. Weertman, Acta Metall. 27, 387 (1979).

    Article  CAS  Google Scholar 

  16. F. Garofalo, Trans. AIME 227, 351 (1963).

    Google Scholar 

  17. E.W. Hart and H.D. Solomon, Acta Metall. 21, 295 (1973).

    Article  CAS  Google Scholar 

  18. D. Lee and E.W. Hart, Metall. Trans. 2, 1245 (1971).

    Google Scholar 

  19. G.S. Murty, J. Mater. Sci. 8, 611 (1973).

    Article  CAS  Google Scholar 

  20. I. Gupta and J.C.M. Li, Metall. Trans. 1, 2323 (1970).

    CAS  Google Scholar 

  21. E.W. Hare and R.G. Stang, J. Electron. Mater. 24, 1473 (1995).

    CAS  Google Scholar 

  22. D. Grivas (M.S. Thesis, University of California-Berkeley, 1974).

  23. B.P. Kashyap and G.S. Murty, Metall. Trans. A 12A, 1923 (1981).

    Google Scholar 

  24. B.P. Kashyap and G.S. Murty, Metall. Trans. A 13A, 53 (1982).

    CAS  Google Scholar 

  25. M.W. Woodmansee and R.W. Neu, Mater. Sci. Eng. A322, 79 (2002).

    CAS  Google Scholar 

  26. P.L. Hacke, A.F. Sprecher, and H. Conrad, J. Electron. Mater. 26, 775 (1997).

    Google Scholar 

  27. T.H. Alden, Acta Metall. 15, 469 (1967).

    Article  CAS  Google Scholar 

  28. F.A. Mohamed and T.G. Langdon, Acta Metall. 23, 117 (1975).

    Article  CAS  Google Scholar 

  29. M.F. Ashby and R.A. Verrall, Acta Metall. 21, 149 (1973).

    Article  CAS  Google Scholar 

  30. G.E. Dieter, Mechanical Metallurgy, SI metric edition, (New York: McGraw Hill, 1988), pp. 432–470.

    Google Scholar 

  31. B.P. Kashyap, A. Arieli, and A.K. Mukherjee, J. Mater, Sci. 20, 2661 (1985).

    Article  CAS  Google Scholar 

  32. S. Wiese, F. Feustel, and E. Meusel, Sensors Actuators A 99, 188 (2003).

    Article  Google Scholar 

  33. R. Arrowood and A.K. Mukherjee, Mater. Sci. Eng. 92, 23 (1987).

    Article  CAS  Google Scholar 

  34. D. Grivas, K.L. Murty, and J.W. Morris, Jr., Acta Metall. 27, 731 (1979).

    Article  CAS  Google Scholar 

  35. A. Juhasz, P. Tasnadi, P. Szaszvari, and I. Kovacs, J. Mater. Sci., 21, 3287 (1986).

    Article  CAS  Google Scholar 

  36. P. Kashyap and G.S. Murty, Mater. Sci. Eng. 50, 205 (1981).

    Article  CAS  Google Scholar 

  37. S.T. Lam, A. Arieli, and A.K. Mukherjee, Mater. Sci. Eng. 40, 73 (1979).

    Article  CAS  Google Scholar 

  38. F. Yang and J.C.M. Li, Mater. Sci. Eng. A201, 40 (1995).

    CAS  Google Scholar 

  39. D.H. Avery and W.A. Backofen, Trans. ASM 58, 551 (1965).

    CAS  Google Scholar 

  40. G.J. Davies, J.W. Edington, C.P. Culter, and K.A. Padmanabhen, J. Mater. Sci. 5, 1091 (1970).

    Article  CAS  Google Scholar 

  41. C.E. Pearson, J. Inst. Met. 54, 111 (1934).

    Google Scholar 

  42. D. Dingley, Scanning Electron Microscopy (Chicago, IL: IIC Research Institute, 1970), p. 329.

    Google Scholar 

  43. E. Geckinli and C.R. Barret, J. Mater, Sci. 11, 510 (1976).

    Article  CAS  Google Scholar 

  44. N. Furushiro and S. Hori, Scripta Metall. 13, 653 (1979).

    Article  CAS  Google Scholar 

  45. R.B. Vastava and T.G. Langdon, Scripta Metall. 27, 251 (1979).

    CAS  Google Scholar 

  46. H.E. Cline and T.H. Alden, Trans. AIME 239, 710 (1967).

    CAS  Google Scholar 

  47. H.W. Hayden and J.H. Brophy, Trans. ASM 61, 542 (1968).

    Google Scholar 

  48. H.W. Hayden, R.C. Gibson, H.F. Merrick, and J.F. Brophy, Trans. ASM 60, 3 (1967).

    CAS  Google Scholar 

  49. B. Baudelet and M. Suery, J. Mater. Sci. 7, 512 (1972).

    Article  CAS  Google Scholar 

  50. F.A. Mohamed and T.G. Langdon, Phil. Mag. 32, 697 (1975).

    CAS  Google Scholar 

  51. M.F. Ashby, Acta Metall. 20, 827 (1972).

    Google Scholar 

  52. J.H. Schneibel and P.M. Hazzledine, J. Mater. Sci. 18, 562 (1983).

    Article  Google Scholar 

  53. J.J. Stephens and D.R. Frear, Metall. Mater, Trans. 30A, 1301 (1999).

    CAS  Google Scholar 

  54. R.N. Stevens, Met. Rev. 11, 129 (1969).

    Google Scholar 

  55. R.H. Hopkins and R.W. Kraft, Trans. AIME 242, 1627 (1968).

    Google Scholar 

  56. S.M. Lee and D.S. Stone, Scripta Metall. Mater. 30, 1213 (1994).

    Article  CAS  Google Scholar 

  57. J.W. Morris, Jr., D. Tribula, T.S.E. Summers, and D. Grivas (Paper presented at NEPCON West 90’, Anaheim, CA, 1990).

  58. D.I. Holt and W.A. Backofen, Trans. AIME 59, 755 (1966).

    CAS  Google Scholar 

  59. D. Turnball and H.N. Treaftis, Acta Metall. 3, 43 (1955).

    Article  Google Scholar 

  60. Z. Mei, J.W. Morris, Jr., M.C. Shine, and T.S.E. Summers, J. Electron. Mater. 20, 599 (1991).

    CAS  Google Scholar 

  61. W.A. Tiller and R. MrDjenovich, J. Appl. Phys. 34, 3639 (1969).

    Article  Google Scholar 

  62. J.R. Wilcox, R. Subrahamanyan, and C.-Y. Li, 2nd ASM Int. Electronic Materials and Processing Congr., ed. Wei T. Shieh (Philadelphia, PA, 1989), p. 203.

  63. J.R. Wilcox, Ph.D. thesis, Cornell University, Ithaca, NY, (1990), from The Mechanics of Solder Alloy Interconnects, ed. D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau (New York: Van Nostrand Reinhold, 1994).

    Google Scholar 

  64. H. Mavoori, J. Chin, S. Vayman, B. Moran, L. Keer, and M. Fine, J. Electron. Mater. 26, 783 (1997).

    CAS  Google Scholar 

  65. R. Arrowood and A.K. Mukherjee, Mater. Sci. Eng. 92, 33 (1987).

    Article  CAS  Google Scholar 

  66. G. Arfken, Mathematical Methods for Physicists, 3rd edition (Oxford, OH: 1987), pp. 505–574.

  67. D.J. Seol (M.S. Thesis, Seoul National University, 1998).

  68. J.H. Schneibel and P.M. Hazzledine, Acta Metall. 30, 1223 (1982).

    Article  CAS  Google Scholar 

  69. J.W. Miller, Phys. Rev., 181, 1095, (1969), from Smithells Metals Reference Book, 7th edition, ed. E.A. Brandes (London: Butterworth and Co., 1992), pp. 13:1–13:14.

    Article  CAS  Google Scholar 

  70. N.H. Nachtrieb and G.S. Handler, J. Chem. Phys. 23, 1569 (1955).

    Article  CAS  Google Scholar 

  71. D. Gupta and D.R. Campbell, Phil. Mag. A 42, 513 (1980).

    CAS  Google Scholar 

  72. B. Okkerse, Acta Metall. 2, 551 (1954).

    Article  Google Scholar 

  73. J. Oberschmidt, K.K. Kim, and D. Gupta, J. Appl. Phys. 53, 5672 (1982).

    Article  CAS  Google Scholar 

  74. W. Lange and D. Bergner, Physica Status Solidi 2, 1410 (1962).

    CAS  Google Scholar 

  75. W. Lange, A. Hassner, and I. Berthold, Physica Status Solidi 1, 50 (1961).

    CAS  Google Scholar 

  76. K.K. Kim, D. Gupta, and P.S. Ho, J. Appl. Phys. 53, 3620 (1982).

    Article  CAS  Google Scholar 

  77. R. Darveaux and K. Banerji, “Constitutive Relations for Tin-Based Solder Joints,” IEEE Trans. on Comp., Hyb. and Manu. Tech., 15 (6) (Dec. 1992), p. 1013.

    Article  CAS  Google Scholar 

  78. E. Baker, Mater. Sci. Eng. 38, 241 (1979).

    Article  CAS  Google Scholar 

  79. E. Baker and T.J. Kessler, IEEE Trans. Parts, Hybrid Packaging PHP-9, 243 (1973).

    Article  Google Scholar 

  80. E.I. Savage and G.D. Getzan, Proc. Int. Sym. on Microelectronics (Chicago, IL: ISHM, 1990), pp. 669–673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, W.H., Oh, K.H., Jung, J.P. et al. The correlation between stress relaxation and steady-state creep of eutectic Sn-Pb. J. Electron. Mater. 34, 1287–1300 (2005). https://doi.org/10.1007/s11664-005-0252-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0252-9

Key words

Navigation