Skip to main content
Log in

Concentrations of native and gold defects in HgCdTe from first principles calculations

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have studied the defect formation energies of the various native (vacancies, interstitials, and antisites) and Au defects in Hg1−xCdxTe using density functional-based total energy calculations with ultrasoft pseudo-potentials. These studies are important for infrared (IR) detection technology where the device performance can be severely degraded because of defects. To calculate formation energies, we modeled the neutral and charged defects using supercells containing 64 atoms. From the formation energies, we have determined the defect concentrations as a function of stoichiometry and temperature. We find the prevalent neutral defects to be Au at the Hg site (AuHg ), Hg vacancies (VHg ), and Te antisites (TeHg ). We have also explicitly studied charged defects and have found Te 2+Hg , Au 1−Hg , V 1−Hg , V 2−Hg , and V 2+Te to have low formation energies. We have identified AuHg to be the prevalent Au defect, having concentrations several orders of magnitude greater than the other Au defects. We find that the charge state of VHg is primarily (1−) or (2−) depending on the electronic chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Berding, M. van Schilfgaarde, and A. Sher, Phys. Rev. B 50, 1519 (1994).

    Article  CAS  Google Scholar 

  2. H.F. Schaake, J. Electron. Mater. 30, 789 (2001).

    CAS  Google Scholar 

  3. H.F. Schaake, private communication, (2003).

  4. H.R. Vydyanath, J.C. Donovan, and D. Nelson, J. Electrochem. Soc. 128, 2625 (1981).

    Article  CAS  Google Scholar 

  5. D.E. Cooper and W.A. Harrison, J. Vac. Sci. Technol. A 8, 112 (1990).

    Article  Google Scholar 

  6. G. Kresse and J. Hafner, Phys. Rev. B 47, RC558 (1993); G. Kresse (Ph.D. thesis, Technische Universitat Wien, 1993); G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); G. Kresse and J. Furthmuller, Phys. Rev. B 54, 1169 (1996).

  7. VASP Group, Theoretical Physics Department, Vienna, Austria. Full documentation available online at http://cms.mpi.univie.ac.at/vasp/Welcome.html

  8. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  10. J.P. Perdew and Y. Wang, Phys. Rev. B 46, 6671 (1992).

    Article  CAS  Google Scholar 

  11. J.E. Northrup and S.B. Zhang, Phys. Rev. Lett. 67, 2339 (1991).

    Article  Google Scholar 

  12. J.E. Northrup and S.B. Zhang, Phys. Rev. B 47, 6791 (1991).

    Article  Google Scholar 

  13. G.L. Hansen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1982).

    Article  Google Scholar 

  14. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  15. M.A. Berding, A. Sher, and M. van Schilfgaarde, J. Electron. Mater. 26, 625 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciani, A.J., Ogut, S. & Batra, I.P. Concentrations of native and gold defects in HgCdTe from first principles calculations. J. Electron. Mater. 33, 737–741 (2004). https://doi.org/10.1007/s11664-004-0075-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0075-0

Key words

Navigation