Skip to main content
Log in

In-situ nanoindentation of epitaxial TiN/MgO (001) in a transmission electron microscope

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The deformation behavior of the epitaxial TiN/MgO (001) thin film/substrate system was studied through in-situ nanoindentation in a transmission electron microscope (TEM). The required sample geometry was prepared using Ga+ focused ion beam (FIB) etching. During room-temperature indentation, both the TiN film and the MgO substrate deformed through the motion of dislocations. The result was a localized hemispherical plastic zone in the TiN film directly under the indentation contact area, forming an 8° tilt boundary. These results show directly that small-scale plasticity in TiN can occur at room temperature through the motion of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Sundgren, A. Rockett, and J.E. Greene, J. Vac. Sci. Technol. A 6, 2770 (1986).

    Article  Google Scholar 

  2. For example, W.S. Williams, Progress in Solid State Chemistry (New York: Pergamon Press, 1971), pp. 57–118.

    Google Scholar 

  3. W.S. Williams, Proprietes Thermodynamiques, Physiques et Structurales des Derives Semi-metalliques (Paris, editions du Centre National de la Rechereche Scientifique, 1967), pp. 181–189.

    Google Scholar 

  4. M. Oden, H. Ljungcrantz, and L. Hultman, J. Mater. Res. 12, 2134 (1997).

    CAS  Google Scholar 

  5. W.S. Williams, J. Appl. Phys. 35, 1329 (1964).

    Article  CAS  Google Scholar 

  6. L.E. Toth, Transition Metal Carbides and Nitrides (New York, Academic Press, 1971), p. 5.

    Google Scholar 

  7. J.S. Chun, I. Petrov, and J.E. Greene, J. Appl. Phys. 86, 3633 (1999).

    Article  CAS  Google Scholar 

  8. H. Holleck, J. Vac. Sci. Technol. A 4, 2661 (1986).

    Article  CAS  Google Scholar 

  9. E.A. Stach, Microsc. Microanal. 7, 507 (2001).

    CAS  Google Scholar 

  10. A.M. Minor, J.W. Morris, and E.A. Stach, Appl. Phys. Lett. 79, 1625 (2001).

    Article  CAS  Google Scholar 

  11. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris, Jr., J. Electron. Mater. 31, 958 (2002).

    Article  CAS  Google Scholar 

  12. B.W. Karr, I. Petrov, P. Desjardins, D.G. Cahill, and J.E. Greene, Surf. Coating Technol. 94–95, 403 (1997).

    Article  Google Scholar 

  13. B.W. Karr, I. Petrov, D.G. Cahill, and J.E. Greene, Appl. Phys. Lett. 70, 1703 (1997).

    Article  CAS  Google Scholar 

  14. B.W. Karr, D.G. Cahill, I. Petrov, and J.E. Greene, Phys. Rev. B 61, 16137 (2000).

    Article  CAS  Google Scholar 

  15. R. Menzel, K. Gartner, W. Wesch, and H. Hobert, J. Appl. Phys. 88, 5658 (2000).

    Article  CAS  Google Scholar 

  16. S. Rubanov and P.R. Munroe, J. Mater. Sci. Lett. 20, 1181 (2001).

    Article  CAS  Google Scholar 

  17. J. Ziegler, TRIM, http://www.srim.org

  18. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.-E. Sundgren, J. Appl. Phys. 80, 6725 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minor, A.M., Stach, E.A., Morris, J.W. et al. In-situ nanoindentation of epitaxial TiN/MgO (001) in a transmission electron microscope. J. Electron. Mater. 32, 1023–1027 (2003). https://doi.org/10.1007/s11664-003-0084-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0084-4

Key words

Navigation