Skip to main content
Log in

Thermal diffusion of lithium acceptors into ZnO crystals

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) has been used to monitor the diffusion of lithium ions into single crystals of ZnO. The in-diffusion occurs when a crystal is embedded in LiF powder and then held in air at temperatures near 750°C for periods of time ranging up to 22 h. These added lithium ions occupy zinc sites and become singly ionized acceptors (because the material is initially n type). A corresponding reduction in the number of neutral shallow donors is observed with EPR. To monitor the lithium acceptors, we temporarily convert them to the EPR-active neutral acceptor state by exposure to laser light (325 nm or 442 nm) at low temperatures. Also, after each diffusion treatment, we monitor the EPR signal of singly ionized copper acceptors and the photo-induced EPR signal of neutral nitrogen acceptors. These nitrogen and copper impurities are initially present in the crystal, at trace levels, and are made observable by the thermal anneals. Infrared-absorption measurements at room temperature in the 2–10 µm region show that the concentration of free carriers decreases as lithium is added to the crystal. After 22 h at 750°C in the LiF powder, the free-carrier absorption is no longer present, and the crystal is semi-insulating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Litton, D.C. Reynolds, and T.C. Collins, eds., Properties of Zinc Oxide (London, INSPEC, 2003).

    Google Scholar 

  2. O.F. Schirmer, J. Phys. Chem. Solids 29, 1407 (1968).

    Article  CAS  Google Scholar 

  3. A.L. Taylor, G. Filipovich, and G.K. Lindeberg, Solid State Commun. 8, 1359 (1970).

    Article  CAS  Google Scholar 

  4. D. Galland and A. Herve, Phys. Lett. A 33, 1 (1970).

    Article  CAS  Google Scholar 

  5. R. Dingle, Phys. Rev. Lett. 23, 579 (1969).

    Article  CAS  Google Scholar 

  6. A. Zeuner, H. Alves, D.M. Hofmann, B.K. Meyer, A. Hoffmann, U. Haboeck, M. Straaburg, and M. Dworzak, Phys. Status Solidi (b) 234, R7 (2002).

    Google Scholar 

  7. N.Y. Garces, L. Wang, N.C. Giles, L.E. Halliburton, G. Cantwell, and D.B. Eason, J. Appl. Phys. (in press).

  8. K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, J. Cryst. Growth 209, 526 (2000).

    Article  CAS  Google Scholar 

  9. Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).

    CAS  Google Scholar 

  10. X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R.P.H. Chang, J. Cryst. Growth 226, 123 (2001).

    Article  CAS  Google Scholar 

  11. M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Physica B 302–303, 140 (2001).

    Article  Google Scholar 

  12. X.L. Guo, H. Tabata, and T. Kawai, J. Cryst. Growth 237–239, 544 (2002).

    Article  Google Scholar 

  13. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

  14. Y.R. Ryu, W.J. Kim, and H.W. White, J. Cryst. Growth 219, 419 (2000).

    Article  CAS  Google Scholar 

  15. C. Morhain, M. Teisseire, S. Vezian, F. Vigue, F. Raymond, P. Lorenzini, J. Guion, G. Neu, and J.P. Faurie, Phys. Status Solidi (b) 229, 881 (2002).

    Article  CAS  Google Scholar 

  16. W.C. Holton, J. Schneider, and T.L. Estle, Phys. Rev. 133, A1638 (1964).

    Google Scholar 

  17. W.M. Walsh and L.W. Rupp, Phys. Rev. 126, 952 (1962).

    Article  CAS  Google Scholar 

  18. W.E. Carlos, E.R. Glaser, and D.C. Look, Physica B 308–310, 976 (2001).

    Article  Google Scholar 

  19. N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, and D.C. Look, Appl. Phys. Lett. 80, 1334 (2002).

    Article  CAS  Google Scholar 

  20. R.E. Dietz, H. Kamimura, M.D. Sturge, and A. Yariv, Phys. Rev. 132, 1559 (1963).

    Article  CAS  Google Scholar 

  21. J. Schneider and A. Rauber, Z. Naturforsch. A 16, 712 (1961).

    Google Scholar 

  22. D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, and P.G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).

    Google Scholar 

  23. O.F. Schirmer and D. Zwingel, Solid State Commun. 8, 1559 (1970).

    Article  CAS  Google Scholar 

  24. N.Y. Garces, L. Wang, M.M. Chirila, L.E. Halliburton, and N.C. Giles, MRS Symp. Proc. 744, 87 (2003).

    CAS  Google Scholar 

  25. J.I. Pankove, Optical Processes in Semiconductors (New York: Dover Publications, 1975), pp. 74–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garces, N.Y., Wang, L., Giles, N.C. et al. Thermal diffusion of lithium acceptors into ZnO crystals. J. Electron. Mater. 32, 766–771 (2003). https://doi.org/10.1007/s11664-003-0068-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0068-4

Key words

Navigation